期刊文献+

Drift perturbation of subordinate Brownian motions with Gaussian component

Drift perturbation of subordinate Brownian motions with Gaussian component
原文传递
导出
摘要 Let d ≥ 1 and Z be a subordinate Brownian motion on R^d with infinitesimal generator ? + ψ(?),where ψ is the Laplace exponent of a one-dimensional non-decreasing L′evy process(called subordinator). We establish the existence and uniqueness of fundamental solution(also called heat kernel) pb(t, x, y) for non-local operator L^b= ? + ψ(?) + b ?, where Rb is an Rd-valued function in Kato class K_(d,1). We show that p^b(t, x, y)is jointly continuous and derive its sharp two-sided estimates. The kernel pb(t, x, y) determines a conservative Feller process X. We further show that the law of X is the unique solution of the martingale problem for(L^b, C_c~∞(R^d)) and X is a weak solution of Xt = X0+ Zt + integral from n=0 to t(b(Xs)ds, t ≥ 0).Moreover, we prove that the above stochastic differential equation has a unique weak solution. Let d ≥ 1 and Z be a subordinate Brownian motion on R^d with infinitesimal generator△ + ψ(△),where ψ is the Laplace exponent of a one-dimensional non-decreasing L′evy process(called subordinator). We establish the existence and uniqueness of fundamental solution(also called heat kernel) pb(t, x, y) for non-local operator L^b= △ + ψ(△) + b △, where Rb is an Rd-valued function in Kato class K_(d,1). We show that p^b(t, x, y)is jointly continuous and derive its sharp two-sided estimates. The kernel pb(t, x, y) determines a conservative Feller process X. We further show that the law of X is the unique solution of the martingale problem for(L^b, C_c~∞(R^d)) and X is a weak solution of Xt = X0+ Zt + integral from n=0 to t(b(Xs)ds, t ≥ 0).Moreover, we prove that the above stochastic differential equation has a unique weak solution.
出处 《Science China Mathematics》 SCIE CSCD 2016年第2期239-260,共22页 中国科学:数学(英文版)
基金 supported by National Science Foundation of USA(Grant No.DMS-1206276) National Natural Science Foundation of China(Grant No.11371217)
关键词 subordinate Brownian motion heat kernel Kato class gradient perturbation Feller process L^vysystem martingale problem stochastic differential equation 布朗运动 从属 扰动 漂移 分量 高斯 随机微分方程 存在唯一性
  • 相关文献

参考文献1

二级参考文献46

  • 1Zhen-Qing Chen,Panki Kim,Takashi Kumagai.Weighted Poincaré inequality and heat kernel estimates for finite range jump processes[J]. Mathematische Annalen . 2008 (4)
  • 2Luis A. Caffarelli,Sandro Salsa,Luis Silvestre.Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian[J]. Inventiones mathematicae . 2008 (2)
  • 3Zhen-Qing Chen,Takashi Kumagai.Heat kernel estimates for jump processes of mixed types on metric measure spaces[J]. Probability Theory and Related Fields . 2008 (1-2)
  • 4Itai Benjamini,Zhen-Qing Chen,Steffen Rohde.Boundary trace of reflecting Brownian motions[J]. Probability Theory and Related Fields . 2004 (1)
  • 5Krzysztof Bogdan,Krzysztof Burdzy,Zhen-Qing Chen.Censored stable processes[J]. Probability Theory and Related Fields . 2003 (1)
  • 6Richard F. Bass,David A. Levin.Harnack Inequalities for Jump Processes[J]. Potential Analysis . 2002 (4)
  • 7Zhen-Qing Chen,Panki Kim.Green function estimate for censored stable processes[J]. Probability Theory and Related Fields . 2002 (4)
  • 8Zhen-Qing Chen.Multidimensional symmetric stable processes[J]. Korean Journal of Computational & Applied Mathematics . 1999 (2)
  • 9Zhen-Qing Chen,Renming Song.Estimates on Green functions and Poisson kernels for symmetric stable processes[J]. Mathematische Annalen . 1998 (3)
  • 10Janicki A,,Weron A.Simulation and Chaotic Behavior of α-Stable Processes. . 1994

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部