期刊文献+

一种关注消息时效性的机会社会网络中节点传播能力分析模型 被引量:7

An Analytical Model for Ranking the Candidates of Disseminating Time-Bound Messages in Opportunistic Mobile Social Networks
在线阅读 下载PDF
导出
摘要 当前评估节点传播能力的工作大多针对静态网络.本文采用演化图模型对机会社会网络进行刻画,通过将传统通路(walk)的概念和静态图中的Katz中心性度量扩展到动态网络中,提出了一种基于历史相遇记录评估节点消息分发能力的方法.进一步,针对消息的时效性特性,本文提出了消息随时间推移效用递减的节点传播能力分析模型,该模型考虑了消息所有可能经历的空间和时间通路,并沿时间方向向下加权以描述消息时效性递减效应,可用于有效计算和预测节点的消息转发能力.本文的结论通过真实数据得到了验证. Traditional methods for evaluating node importance in sustaining the overall network topology or information dis-semination are widely studied,while most of them are not applicable to dynamic settings where connections among nodes change frequently over time.This paper treats an opportunistic mobile social network as a time evolved,dynamic graph and proposes an ef-fective scheme to calculate the relative nodal dissemination capability based on the contact history.In particular,we analyze the node importance in forwarding messages in more general settings where messages are time-dependent and become less important or out of date over time.To this end,we take a dynamic walk counting approach to calculate all possible temporal-spatial routes from a node to any other node by using a method of down-weighting of length.Since the age of a message increases with time,the old walks are discounted to represent the fading influence on the destination nodes.Experiments are conducted based on 4 real-world trace datasets,and the results show that our analytical result is effective at ranking the capabilities of nodes in disseminating or receiving the time-dependent messages.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第9期1705-1713,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61170296,No.61373091,No.61190125) 国家863计划(No.2012AA050804) 北京市教委科技计划(No.KM201110011004) 北京工商大学国有资产管理协同创新中心项目(No.GZ20131102)
关键词 机会社会网络 Katz 中心性 动态通路 社会相遇记录 opportunistic mobile social networks Katz centrality dynamic walk social contact trace
  • 相关文献

参考文献16

  • 1Vastardis N, Kun Y. Mobile social networks: architecture, social properties and key research challengesE J]. IEEE. Communica- tions Surveys and Tutorials,2013,15(3) : 1355 - 1371.
  • 2Conti M, Kumar M. Opportunilies in ostic computing[J].IEEE. Computer,2010,43 (1):42 - 50.
  • 3Sun J, Faloutsos C, Papadimitriou S, et al. Graphscope: parame- ter-free mining of large lime-evolving graphs[ A]. Proceedings of the 13th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining [ C ]. San Jose, CA, USA: ACM, 2007.687 - 696.
  • 4Pelusi L,Passarella A, Conti M. Opportunistic networking: data forwarding in disconnected mobile ad hoc networks [ J ]. IEEE Communications Magazine, 2006,44( 11 ) : 134 - 141.
  • 5Conti M, Crowcroft J, Giordano S, et al. Middleware for Net- work Eccentric and Mobile Applications[ M ]. Berlin Heidel- berg: Springer,2009,121 - 147.
  • 6Chaintreau A,Hui P, Cmwcroft J, et al. Impact of human mo- bility on opportunistic forwarding algodthms[ J]. IEEE Transac- tions on Mobile Computing,2007,6(6) :606 - 620.
  • 7Newman M E J. Handbook of Graphs and Networks:From the Genome to the Intemet[M] .New York, NY, USA: Wiley-VCH Vedag GmbH & Co KGaA,2005.35- 68.
  • 8Rossi R A, Gallagher B,NeviUe J,et al.Modeling dynamic be- havior in large evolving graphs [ A ]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining [C]. DaUas, TX, USA: ACM,2013. 667 - 676.
  • 9Holme P, SararrYtki J. Temporal networks[ J]. Physics reports, 2012,519(3) :97 - 125.
  • 10Newman M. Networks: An Introduction[ M]. Oxford: Oxford University Press, 2010.

同被引文献78

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部