期刊文献+

Gould-Hsu反演与2个几乎列平衡超几何级数变换

Gould-Hsu inversion and two almost well-poised hypergeometric series transformation
在线阅读 下载PDF
导出
摘要 为进一步探讨反演技巧在一般超几何级数中的应用,利用Gould-Hsu反演原理研究Gosper在1977年给出的2个3F2(3/4)-超几何级数求和公式,获得2个几乎列平衡的一般超几何级数变换。这2个变换可以导出著名的Dougall公式的2个特例。 To further discuss the application of inversion techniques to generalized hypergeometric series, by means of Gould-Hsu inversion technique, two a F2 (3/4)-series summation formulae due to Gosper (1977) are investigated. Two almost well-poised generalized hypergeometric series identities are established, which can be respectively reduced to two special cases of Dougall's known formula.
出处 《中国科技论文》 CAS 北大核心 2015年第17期2095-2097,共3页 China Sciencepaper
基金 国家自然科学基金天元基金资助项目(11226278)
关键词 组合分析 一般超几何级数 Gould-Hsu反演 combinatorial analysis generalized hypergeometrie series Gould-Hsu inversion
  • 相关文献

参考文献7

  • 1Bailey W N.Generalized Hypergeometric Series[M].Cambridge:Cambridge University Press,1935.
  • 2Slater L J.Generalized Hypergeometric Function[M].Cambridge:Cambridge University Press,1966.
  • 3Gould H W,Hsu L C.Some new series inverse relation[J].Duke Mathematical Journal,1973,40:885-891.
  • 4Chu W C.Inversion techniques and combinatorial identities:aquick introduction to hypergeometric evaluations[J].Runs and Patterns in Probability,1994,283:31-57.
  • 5Wang C Y,Chen X J.A new proof for a nonterminating cubic hypergeometric identity of Gasper-Rahman[J].Journal of Nanjing University Mathematical Biquarterly,2015,32(1):38-45.
  • 6Wang C Y,Chen X J.A short proof for Gosper’s7F6-series conjecture[J].Journal of Mathematical Analysis and Applications,2015,422:819-824.
  • 7Dougall J.On Vandermonde’s theorem and some more general expansion[J].Proceedings of the Edinburgh Mathematical Society,1907,25:114-132.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部