期刊文献+

基于MLS方法的本体算法 被引量:1

Ontology Algorithms Based on MLS Method
在线阅读 下载PDF
导出
摘要 MLS模型作为一种逼近模型被广泛应用于数据光滑、数值分析和统计等诸多领域.文章将MLS模型用于最优本体函数的计算,将本体图中每个顶点映射成实数后,通过顶点对应实数间的差值来确定它们的相似度.将新本体算法应用于GO本体和物理教育本体,通过实验结果表明新算法对特定应用领域的相似度计算和建立本体映射是有效的. Mowng least-square method 's an approximation method tor data smoothing, numerical analysis, stansucs ana many other fields. We apply MLS method to get the optimal ontology function, and then each vertex is mapped into a real number. The similarity be- tween two vertices is determined by virtue of the difference of their corresponding real numbers. The new ontology algorithm is applied to the Go and the physical education ontologies, and the experiment results show that the new algorithms with efficiency in specific applica- tions for similarity measure and ontology mapping building.
作者 何国英 高炜
出处 《红河学院学报》 2015年第5期14-16,共3页 Journal of Honghe University
基金 国家自然科学青年基金资助项目(11401519) 教育部科学技术研究重点项目(210210)
关键词 本体 相似度计算 本体映射 MLS方法 Ontology Similarity measure Ontology mapping MLS method
  • 相关文献

参考文献10

二级参考文献71

  • 1黄果,周竹荣,周亭.基于语义网的信息检索研究[J].西南大学学报(自然科学版),2007,29(1):77-80. 被引量:12
  • 2黄果,周竹荣.基于领域本体的概念语义相似度计算研究[J].计算机工程与设计,2007,28(10):2460-2463. 被引量:67
  • 3LUXBURG U, BELKIN M, BOUSQUET O. Consistency of spectral clustering[J]. Ann Stat, 2008, 36(2): 555-586.
  • 4CHUNG F. Spectral graph theory[M]. Fresno: American Mathem Atical Society, 1997: 1-50.
  • 5ZHOU D X. Capacity of reproducing kernel spaces in learning theory[J]. IEEE Trans Inform Theory, 2003, 49(7): 1 743-1 752.
  • 6ZHOU D. The covering number in learning theory[J]. J Complexity, 2002, 18(3): 739-767.
  • 7CUCKER F, ZHOU D. Learning theory: an approximation theory viewpoint[M[. Cambridge: Cambridge University Press, 2007: 113-117.
  • 8Zhou D, Huang J, SchOlkopf B. Beyond pairwise classification and clustering using hypergraphs[P]. Canada.. University of Waterloo, 2005.
  • 9Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf Learning with Hypergraphs: Clustering, Classification, and Embedding[C]// Proceedings of 20th Annual Conference on Neural Information Processing SysterrLs, 2.006, Vancouver / Whistler, Canada: IEEE 2006 : 1601-1608.
  • 10Liang Sun, Shuiwang Ji, Jieping Ye. Hypergraph spectral learning for multi--label classification[C]// Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. Las Vegas, Nevada, USA: ACM, 2008:668--676.

共引文献43

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部