期刊文献+

高阶张量Pareto-特征值的若干性质(英文) 被引量:1

Some properties on Pareto-eigenvalues of higher-order tensors
在线阅读 下载PDF
导出
摘要 考虑高阶张量特征值互补问题,由于求解张量的最大Pareto-特征值是一个NP难问题,关注于Pareto-特征值的估计,并给出若干关于Z-张量和M-张量的Pareto-特征值的性质. We consider the higher-order tensor eigenvalue complementarity problem (TEiCP). Since finding the largest Pareto-eigenvalue of tensor is NP-hard in general, in this paper we focus on studying the estimation of the Pareto-eigenvalue. We also present some properties for Pareto-eigenvalues of Z-tensors and M-tensors.
作者 徐凤 凌晨
出处 《运筹学学报》 CSCD 北大核心 2015年第3期34-41,共8页 Operations Research Transactions
基金 supported by the Natural Science Foundation of China(Grant No.11171083 and 11301123) the Zhejiang Provincial National Science Foundation of China(Grant No.LZ14A010003)
关键词 高阶张量 特征值互补 Pareto-特征值 非负张量 M-张量 higher order tensor, eigenvalue complementarity, Pareto-eigenvalue, non-negative tensor, M-tensor
  • 相关文献

参考文献13

  • 1Qi L. Eigenvalues of a real supersymmetric tensor [J]. Journal of Symbolic Computation, 2005, 40: 1302-1324.
  • 2Lim L H. Singular values and eigenvalues of tensors: a variational approach [C]//Proeeedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Addaptive Processing, 2005, 1: 129-132.
  • 3Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors [J]. Journal of Mathematical Analysis and Applications, 2009, 350: 416-422.
  • 4Bloy L, Verma R. On computing the underlying fiber directions from the diffusion orienta- tion distribution function [R]. Medical Image Computing and Computer-Assisted Intervention, MICCAL Heidelberg: Springer, 2008, 1-8.
  • 5Lathauwer L D, Moor B D, Vandewalle J. On the best rank-1 and rank-(R1,R2,... ,RN) approximation of higher-order tensors [J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21: 1324-1342.
  • 6Ni Q, Qi L, Wang F. An eigenvalue method for the positive definiteness identification problem AJ]. IEEE Transactions on Automatic Control, 2008, 53: 1096-1107.
  • 7dly S, Seeger A. A new method for solving Pareto eigenvalue complementarity problems [J]. Computational Optimization and Applications, 2013, 55: 703-731.
  • 8Fernandes L M, Jddice J J, Sherali H D, Fukushima M. On the computation of all eigenvalues for the eigenvalue complementarity problem [J]. Journal of Global Optimization, 2014, 59: 307-326.
  • 9Ling C, He H J, Qi L. On the cone eigenvalue complementarity problem for higherorder tensors [J]. Computational Optimization and Applications, DOI: 10.1007/s10589-015-9767-z.
  • 10hang K C, Pearson K, Zhang T. Perron Frobenius Theorem for nonnegative tensors [J]. Communications in Mathematical Sciences, 2008, 6: 507-520.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部