摘要
针对测地线类人脸识别算法速度慢的问题,提出了一种基于测地线环带特征点采样的三维人脸识别方法。首先根据测地线距离以鼻尖点为中心在人脸表面绘制一系列等距测地线环;再对测地线环带进行特征点采样构成人脸描述特征,并进行PCA(Principal Component Analysis)运算和去相关处理;最终使用投票法融合各环带单独结果以识别人脸。在Face Ware House表情三维人脸数据集上进行的识别实验表明,该方法识别准确率与传统测地线法相当,而识别时间有明显减少,平均识别时间由2.55 s降至0.624 3 s。
A new 3D face recognition method is proposed aming to speed up traditional Iso-geodesic method based on Iso-geodesic curves and features extraction. This method is mainly composed by the following 3 steps: generating a serious of equidistant Iso-geodesic curves by geodesic distance, extracting feature points on every curves of first step and using PCA (Principal Component Analysis) method and voting to final face recognizes. This method has higher recognition speed than the traditional Iso-geodesic method when at the same recognition rate under Face WareHouse dataset. The average recognition time decreased from 2.55 s to 0. 624 3 s.
出处
《吉林大学学报(信息科学版)》
CAS
2015年第4期429-434,共6页
Journal of Jilin University(Information Science Edition)
基金
国家自然科学基金资助项目(61172135)
南京航空航天大学研究生创新基地(实验室)开放基金资助项目(kfjj20130210)
关键词
人脸识别
测地线
特征抽取
主成份分析
face recognition
Iso-geodesic curves
features extraction
principal component analysis (PCA)