期刊文献+

灰色线性幂函数曲线模型在故障预报中的应用

Application of Grey Linear Exponential Model in Fault Prediction
在线阅读 下载PDF
导出
摘要 武器系统故障数据为小样本灰色序列,时常呈现摆动特性,研究发现,灰色摆动序列的建模不满足GM(1,1)模型的条件。为此,提出首先利用动态指数变换,使灰色摆动序列变换为具有一定灰指数律的单调增序列,然后再建立GM(1,1)模型,称之为灰色线性幂函数曲线模型(GIM(1))。对于GIM(1)模型,利用一元线性回归优化建模法进行模型参数辨识。结果证明,GIM(1)模型对于武器系统故障序列中的灰色摆动序列具有良好的拟合和预测精度,不仅融合了灰色辨识算法的优点,而且也能满足一般系统的辨识要求。 Fault data of weapon systems are small-sample grey sequence, which often take on the wobbly characteristic. It is found by research that modeling of the grey wobbly sequence does not satisfy the condition of GM (1, 1 ) model. Therefore, it is proposed to use the dynamic exponent transformation for transforming the grey wobbly sequence into a monotonically increasing sequence with certain grey exponent law, and then to establish a GM (1, 1 ) model, which is called as grey linear power exponent function curve model ( GIM ( 1 ) ). For GIM ( 1 ), the unary linear regression modeling method is used for model parameter identification. The results prove that GIM (1) model has good fitting and prediction accuracy for the grey wobbly sequence of the weapon system's fault sequence, which not only has the advantage of grey identification algorithm, but also can meet the identification requirement of general system.
作者 黄莹
出处 《电光与控制》 北大核心 2015年第9期106-109,共4页 Electronics Optics & Control
关键词 故障预报 武器系统 灰色摆动序列 线性幂指数曲线 一元线性回归 fault prediction weapon system grey wobbly sequence linear power exponent curve unary linear regression
  • 相关文献

参考文献10

二级参考文献102

共引文献401

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部