期刊文献+

Blowup, Global Fast and Slow Solutions for a Semilinear Combustible System

Blowup, Global Fast and Slow Solutions for a Semilinear Combustible System
原文传递
导出
摘要 In this paper, we investigate a semilinear combustible system ut-duxx = vP, vt-dvxx = uq with double fronts free boundary, where p ≥1,q ≥ 1. For such a prob- lem, we use the contraction mapping theorem to prove the local existence and uniqueness of the solution. Also we study the blowup and global existence property of the solution. Our results show that when pq 〉 1 blowup occurs if the initial datum is large enough and the solution is global and slow, whose decay rate is at most polynomial if the initial value is suitably large, while when p 〉 1, q 〉 1 there is a global and fast solution, which decays uniformly at an exponential rate if the initial datum is small.
作者 YUAN Junli
机构地区 Faculty of Science
出处 《Journal of Partial Differential Equations》 CSCD 2015年第2期139-157,共19页 偏微分方程(英文版)
  • 相关文献

参考文献1

二级参考文献2

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部