期刊文献+

Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schr?dinger Equation 被引量:2

Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schr?dinger Equation
原文传递
导出
摘要 In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第5期525-534,共10页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.11271210 the K.C.Wong Magna Fund in Ningbo University
关键词 rogue wave higher-order nonlinear Schr6dinger equation Darboux transformation 高阶非线性薛定谔方程 非线性Schrodinger方程 局部化性质 行列式表示 NLS方程 非线性效应 高阶项 达布变换
  • 相关文献

参考文献51

  • 1A. Ankiewicz and N. Akhmediev, Phys. Lett. A 378 (2014) 358.
  • 2V.E. Zakharov and A.B. Shabat, J. Exp. Theor. Phys. 34 (1972) 62.
  • 3D.H. Peregrine, J. Aust. Math. Soc. Series B 25 (1983) 16.
  • 4N. Akhmediev, A. Ankiewicz, and J.M. Soto-Crespo, Phys. Rev. E 80 (2009) 026601.
  • 5P. Dubard, P. Gaillard, C. Klein, and V.B. Matveev, Eur. Phys. J. Spec. Top. 185 (2010) 247.
  • 6J.S. He, L.H. Wang, L.J. Li, K. Porsezian, and R. Erd~lyi, Phys. Rev. E 89 (2014) 062917.
  • 7B.L. Guo, L.M. Ling, and Q.P. Liu, Phys. Rev. E 85 (2012) 026607.
  • 8Y. Ohta and J.K. Yang, Proc. R. Soc. A 468 (2012) 1716.
  • 9J.S. He, H.R. Zhang, L.H. Wang, K. Porsezian, and A.S. Fokas, Phys. Rev. E 87 (2013) 052914.
  • 10R. Hirota, J. Math. Phys. 14 (1973) 805.

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部