期刊文献+

Experimental study on vortex induced vibration(VIV) of a wide-D-section cylinder in a cross flow 被引量:1

Experimental study on vortex induced vibration(VIV) of a wide-D-section cylinder in a cross flow
在线阅读 下载PDF
导出
摘要 Wake structures and vortex induced vibration (VIV) of a spring-supported wide-D-section cylinder were experimentally investigated using an X-wire, a novel phase-locked particle image velocimetry (PIV), and an acceleration sensor at a low speed wind tunnel. Compared with the fixed case, the 2P (two pair) vortex mode as defined by Govardhan and Williamson (2000) rather than S (single vortex) mode exists in the wake. The velocity deficit behind the cylinder is much larger than that of fixed case. The mean drag coefficient increases from 1.42 for the fixed case to 1.64 for the vibrating case. The Reynolds stress presents even distribution and small with increased distance of X/D = -2 to X/D = -10. The power spectra density based on accelerator and hot wire data presents a highlight identical. It shows that after a strong interaction the cylinder vibration and the vortex shedding come to a stable state. The vortex sheddin~ is totally locked on and controlled by the cylinder vihratinn. Wake structures and vortex induced vibration (VIV) of a spring-supported wide-D-section cylinder were experimentally investigated using an X-wire, a novel phase-locked particle image velocimetry (PIV), and an acceleration sensor at a low speed wind tunnel. Compared with the fixed case, the 2P (two pair) vortex mode as defined by Govardhan and Williamson (2000) rather than S (single vortex) mode exists in the wake. The velocity deficit behind the cylinder is much larger than that of fixed case. The mean drag coefficient increases from 1.42 for the fixed case to 1.64 for the vibrating case. The Reynolds stress presents even distribution and small with increased distance of X/D = -2 to X/D = -10. The power spectra density based on accelerator and hot wire data presents a highlight identical. It shows that after a strong interaction the cylinder vibration and the vortex shedding come to a stable state. The vortex sheddin~ is totally locked on and controlled by the cylinder vihratinn.
出处 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第1期39-44,共6页 力学快报(英文版)
基金 supported by the National Natural Science Foundation of China(11472158)
关键词 Wide D-section cylinderHot wirePhase-locked PIVVortex induced vibrationLock-on Wide D-section cylinderHot wirePhase-locked PIVVortex induced vibrationLock-on
  • 相关文献

参考文献20

  • 1R.D. Blevins. Flow-Induced Vibration, Van Nostrand Reinhold Co., New York, 1990.
  • 2C.H.K. Williamson, R. Govardhan, Vortex-induced vibrations, Annu. Rev. Fluid Mech. 36 (2004) 413-455. http://dx.doi.org/10.1146/annurev.Ruid.36.050802.122128.
  • 3R.D. Gabbai, H. Benaroya, An overview of modeling and experiments of vortexinduced vibration of circular cylinders,J. Sound Vib. 282 (2005) 575-616. http://dx.doi.org/10.1016/j.jsv.2004.04.017. http://www.sciencedirect.com/science/article/pii/50022460X04004845.
  • 4M.P. Pa'idoussis, S.j. Price, E. de Langre, Fluid-Structure Interactions: CrossRow-induced Instabilities, Cambridge University Press, Cambridge, 2011, http://www.carnbridge.org/lls/academic/subjects/engineering/rherrnal-Ruids-engineering/Ruid-structllre-interactions-cross-flow-inducedinstabilities.
  • 5R.M. Corless, G.V. Parkinson, A model of the combined effects of vortexinduced oscillation and galloping, j. Fluids Struct. 2 (1988) 203-220. http://dx.doi.org/10.10 16/50889-97 46( 88 )80008-2. http://www.sciencedirect.com/scie nce/ a rtiel e/ pii/S0889974688800082.
  • 6P.W. Bearman, Vortex shedding from oscillating bluff bodies, Annu. Rev. Fluid Mech. 16 (1984) 195-222. http://dx.doi.org/10.1146/annurev.fl.16. 010184.00 1211. http://www.annualreviews.org/doi/abs/10.1146/annurev.fl. 16.010184.001211 ?journalCode=fluid.
  • 7R.D. Blevins, C.S. Coughran, Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number, j. Fluids Eng. 131 (2009) 101-202. http://dx.doi.org/10.1115fl.3222904. http://fluidsengineering.asmedigitalcollection.asme.org/ article.aspxzarticleid= 1478300.
  • 8T. Sarpkaya, A critical review of the intrinsic nature of vortex-induced vibrations,j. Fluids Struct. 19 (2004) 389-447. http://dx.doi.org/10.1 0 16jj.jRuidstructs.2004.02.005. http://www.sciencedirect.com/science/artiele/pii/S0889974604000350.
  • 9M.L. Facchinetti, E. de Langre, F. Biolley, Coupling of structure and wake oscillators in vortex-induced vibrations,J. Fluids struct. 19 (2004) 123-140. http://dx.doi.org/l0.l016/j.jfluidstructs.2003.12.004. http://www.sciencedirect.com/science/a rtielejpiijS088997 4603001853.
  • 10A. Farshidianfar, H. Zanganeh, A modified wake oscillator model for vortexinduced vibration of circular cylinders for a wide range of mass-damping ratio, j. Fluids Struct. 26 (2010) 430-441. http://dx.doi.org/l0.1016/j.jfluidstructs.2009.11.005. http://www.sciencedirect.com/science/article/pi ijS088997 4610000149.

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部