期刊文献+

基于WLS的雾天交通图像恢复方法 被引量:14

Traffic image defogging method based on WLS
原文传递
导出
摘要 在尘雾等恶劣天气条件下,由于大气粒子的散射作用,致使获取的道路图像严重退化,给交通运输带来很大的困难。为了提高道路环境的可视性,文中提出了一种基于WLS的雾天交通图像恢复算法。该算法从大气散射模型出发,首先进行大气光照的估计与白平衡处理,然后结合道路环境的约束,构建WLS框架对大气耗散函数进行估计,从而恢复场景反照率。通过实验分析可知,文中算法能够有效去除图像中雾霾,消除了Halo效应的影响,较好地凸显图像远景的细节信息,实现了交通图像的视见度的提高。 Images of roads captured by visual surveillance system are usually degraded by scattering due to atmospheric particles such as haze, fog and mist, which could frequently bring great difficulties to the transportation. In this paper, a novel method was proposed based on weighted least squares(WLS) to remove fog from a single input image. The proposed algorithm begins with estimation of atmospheric light and white balance. Then, through the constraint from the road environment, the weighted least squares(WLS) framework was constructed to estimate atmospheric veil, and restore the fog image by inverting the atmospheric scattering model. The experimental results demonstrates that, compared with the existing algorithm, the proposed method can remove the fog effectively, eliminate the Halo effects, obtain good restoration of distant scene details, and thus realize the improvement of traffic image visibility.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第3期1080-1084,共5页 Infrared and Laser Engineering
基金 北京市教委科技发展重点项目(KZ01210005007) 北京市教育委员会科技发展计划(KM201310005020)
关键词 WLS 图像去雾 大气散射模型 白平衡 WLS image defog atmospheric scattering model white balance
  • 相关文献

参考文献10

  • 1黄黎红.退化图像的去雾方法[J].红外与激光工程,2010,39(5):985-988. 被引量:8
  • 2Fattal R. Single image dehazing [J]. ACM Transactions on Graphics(TOG), 2008, 27(3): 1-9.
  • 3He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2009: 1956-1963.
  • 4He K, Sun J, Tang X. Guided image filtefing[C]//European Conference on Computer Vision(ECCV), 2010: 1-14.
  • 5Tarel J, Hauti N. Fast visibility restoration from a single color or gray level image[C]//IEEE International Conference on Computer Vision (ICCV), 2009: 2201-2208.
  • 6Caraffa L, Tarel J. Markov random field model for single image defogging [C]//Intelligent Vehicles Symposium, 2013: 994-999.
  • 7陈舒杭,李子乐,陈梦竹,胡磊,周辉.大气多次散射效应对星载激光测高仪测距偏差值的影响[J].红外与激光工程,2012,41(9):2522-2526. 被引量:7
  • 8葛广一,魏振忠.图像去雾过程中的噪声抑制方法[J].红外与激光工程,2014,43(8):2765-2771. 被引量:10
  • 9Tarel J, Hauti N. ,Vision enhancement in homogeneous and heterogeneous fog [J]. IEEE Intelligent Transportation Systems Magazine, 2012, 4(2): 6-20.
  • 10Krishnan D, Fattal R, Szeliski R. Efficient preconditioning of laplacian matrices for computer graphics [J]. ACM Transaction on Graphics, 2013, 32(4): 1-15.

二级参考文献29

共引文献22

同被引文献74

引证文献14

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部