期刊文献+

基于上下文语境的词义消歧方法 被引量:4

Word sense disambiguation method based on knowledge context
在线阅读 下载PDF
导出
摘要 针对传统词义消歧方法面临的数据稀疏问题,提出一种基于上下文语境的词义消歧方法。该方法假设同一篇文章中的句子之间共享一些相同的话题,首先,抽取在同一篇文章中包含相同歧义词的句子,这些句子可以作为歧义句的上下文语境,为其中的一个歧义句子提供消歧知识;其次,通过一种无监督的词义消歧方法进行词义消歧。在真实的语料上实验结果表明,使用2个上下文语境句子,窗口大小为1时,该方法的消歧准确率比基线方法(Orig Disam)提高了3.26%。 In order to overcome the data sparseness problem of traditional Word Sense Disambiguation( WSD) methods,a new WSD method based on knowledge context was proposed. The method is based on the assumption that sentences within one article share some common topics. Fisrt, similarity algorithm was used to obtain sentences with the same ambiguous words in the article, and those sentences could be appropriate knowledge context for ambiguous sentences and provided disambiguation knowledge. Then a graph-based ranking algorithm was used for WSD. The experimental results of real data show that, when there are two knowledge context sentences and the window size is 1, the disambiguation accuracy of this method is increased by 3. 2% compared to the baseline method( Orig Disam).
作者 杨陟卓
出处 《计算机应用》 CSCD 北大核心 2015年第4期1006-1008,1012,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61403238) 山西省自然科学基金资助项目(2014021022-1)
关键词 数据稀疏 词义消歧 上下文语境 网络图模型 参数估计 data sparseness Word Sense Disambiguation(WSD) knowledge context graph based model parameter estimation
  • 相关文献

参考文献14

  • 1NAVIGLI R. Word sense disambiguation: a survey [ J]. ACM Com- puting Surveys, 2009, 41(2) : 1 -69.
  • 2CHAN Y S, NG H T. Scaling up word sense disambiguation via par- allel texts[ C]//AAAI 2005: Proceedings of the 20th National Con- ference on Artificial Intelligence. Menlo Park: AAAI Press, 2005, 3:1037 - 1042.
  • 3PILEHVAR M T, JURGENS D, NAVIGLI R. Align, disambignate and walk: a unified approach for measuring semantic similarity [ C]//Proceedings of the 51 st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computa- tional Linguistics, 2013, 1:1341 - 1351.
  • 4NAVIGLI R, PONZETTO S P. Joining forces pays off: Multilingnal joint word sense disambiguation[ C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: Asso- ciation for Computational Linguistics, 2012:1399 - 1410.
  • 5鹿文鹏,黄河燕.基于依存适配度的知识自动获取词义消歧方法[J].软件学报,2013,24(10):2300-2311. 被引量:11
  • 6STEVENSON M, AGIRRE E, SOROA A. Exploiting domain infor- mation for word sense disambiguation of medical documents[ J]. Journal of the American Medical Informatics Association, 2012, 19 (2) : 235 - 240.
  • 7AGIRRE E, de LACALLE O L, SOROA A. Random walks for knowledge-based word sense disambiguation [ J ]. Computational Linguistics, 2014, 40(1): 57-84.
  • 8NAVIGLI R, LAPATA M. An experimental study of graph connec- tivity for unsupervised word sense disambiguation[ J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2010, 32(4) : 678 - 692.
  • 9MOHLER M, BUNESCU R, MIHALCEA R. Learning to grade short answer questions using semantic similarity measures and de- pendency graph alignments[ C]// HLT 2011: Proceedings of the 49th Annual Meeting of the Association for Computational Linguis- tics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2011, 1:752-762.
  • 10HASSAN S, MIHALCEA R. Semantic relatedness using salient se- mantic analysis[ C] // Proceedings of AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2011.

二级参考文献6

共引文献35

同被引文献16

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部