期刊文献+

基于水下环境样品采集的水下机器人运动控制策略研究及其展望 被引量:3

Development and Prospect of Motion Control Strategy of Underwater Vehicle Based on Water Sample
在线阅读 下载PDF
导出
摘要 探讨了基于水下环境样品采集的水下机器人系统的运动控制问题,对其运动控制模型特点以及运动控制策略进行了概括总结。根据水下环境样品采集任务的发展要求,对水下机器人系统运动控制策略发展趋势进行了归纳。随着水下环境样品采集质量的提高,指出发挥智能控制算法在水下机器人系统外场试验中的应用价值,是水下机器人系统在复杂环境中高效率完成水下环境样品采集任务的关键。 The problems of the motion control of Underwater Vehicle system which works for the underwater task of water sample were investigated. Correspondingly,some controllers were discussed and generalized based on these characters of motion control model.The development trend of controllers for the motion control strategy of Underwater Vehicle system was concluded according to the development demand of tasks of the water sample underwater. Along with being higher quality to samples with efficient completing the task,it is pointed out that to explore the advantages of intelligent controllers for Underwater Vehicle motions in the field trials has practical values,and is the key for successfully completing the underwater task of water sample in complex conditions.
作者 刘金生
出处 《机床与液压》 北大核心 2015年第5期156-159,147,共5页 Machine Tool & Hydraulics
基金 核技术应用教育部工程中心开放基金项目(HJSJYB2011-09) 江西省教育厅科技项目(GJJ13466) 机器人学国家重点实验室项目(2012-08) 国家自然科学基金资助项目(51009016)
关键词 水下环境样品采集 无人水下机器人 运动控制模型 智能控制算法 Water sample underwater Underwater Vehicle Motion control model Intelligent control algorithm
  • 相关文献

参考文献7

二级参考文献51

  • 1徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9-16. 被引量:126
  • 2俞建成,张艾群,王晓辉.基于SQP算法的7000m载人潜水器有约束非线性控制分配研究[J].信息与控制,2006,35(4):508-512. 被引量:7
  • 3杨凌轩,刘开周,王晓辉.自适应LQR方法在载人潜水器动力定位中的应用研究[J].海洋工程,2006,24(3):100-106. 被引量:2
  • 4高双,朱齐丹,李磊.基于神经网络的高速无人艇模糊PID控制[J].系统仿真学报,2007,19(4):776-779. 被引量:24
  • 5RIDAO P,BATLLE J,CARRERAS M.Model identification of a low-speed uuv[c] H Proceedings of the 1st IFAC Workshop on Guidance and Control of Underwater Vehicles,2003,Glasgow,Scotland.UK:IFAC,2003:47-52.
  • 6TIANO A,SUTTON R,LOZOWICKI A,et al.Observer Kalman filter identification of anautonomous underwater vehicle[J].Control Engineering Practice,2007,15(6):727-739.
  • 7KIM J,KIM K,CHOI H S,et al.Estimation of hydrodynamic coefficients for an AUV using nonlinear observers[J].IEEE Journal of Oceanic Engineering,2002,27(4):830-840.
  • 8CHATCHANAYUONG T,PARNICHKUM M.Neural network based-time optimal sliding mode control for an autonomous underwater robot[J].Mechatronics,2006,16(8):471-478.
  • 9VAN DE VEN P W J,JOHANSEN T A,SφRENSEN J A,et al.Neural network augmented identification of underwater vehicle models[J].Control Engineering Practice,2007,15(6):715-725.
  • 10吴洪兵.AS-UII足球机器人多传感器信息融合研究.科技信息,2008,(30):29-30.

共引文献76

同被引文献338

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部