期刊文献+

一种融合Options与蚁群算法的虚拟机自适应配置方法

A Method of Fusing Options and Ant Colony Algorithm for Virtual Machine Adaptive Configuration
在线阅读 下载PDF
导出
摘要 为了提高云环境的可靠性,对虚拟资源的管理是一个关键.针对虚拟机的自适应配置问题,提出一种分层强化学习Options和蚁群优化算法融合的方法 A-HRL.该方法记录蚂蚁遍历过程中留下的信息素,利用信息素变化率引入粗糙度概念,并根据粗糙度阈值创建子目标实现任务分层.将A-HRL算法应用于虚拟机自适应配置中,通过创建任务组和虚拟机可用性评估表监督每个任务的进度与质量,最大限度地提高每个应用的性能.实验结果表明,A-HRL算法比传统的强化学习算法性能更优. In order to improve the reliability of the cloud, the management of the virtual resource is a key. According to virtual machine adaptive allocation problem, this paper proposes a methods of A-HRL, which fuses the hierarchical reinforcement learning Options and the ant colony optimization algorithm. Ants leave pheromone during the traversal,and pheromones change rate is introduced into the concept of roughness. And creates the hierarchical sub-goals according to the threshold of roughness, thus able to explore more ef- fective. A-HRL algorithm is applied to adaptive applicatioas in the virtual machine configuration,this method creates a task group and virtual machine availability assessment, supervising each task progress and quality, and maximizes performance for each application. The algorithm is used to analyse the virtual machine configuration in CloudSim simulation, and the results show that this algorithm has better performance than the RL algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第4期801-805,共5页 Journal of Chinese Computer Systems
基金 云计算中虚拟机资源与应用系统参数的协同自适应配置研究基金项目(61272382)资助
关键词 OPTIONS 蚁群算法 虚拟机 自适应配置 Options ant colony optimization algorithm virtual machine adaptive configuration
  • 相关文献

参考文献4

二级参考文献89

  • 1WEILI QingtaiYE ChangmingZHU.APPLICATION OF HIERARCHICAL REINFORCEMENT LEARNING IN ENGINEERING DOMAIN[J].Journal of Systems Science and Systems Engineering,2005,14(2):207-217. 被引量:3
  • 2Rochwerger B, Breitgand D, Levy E et al. The Reservoir model and architecture for open federated cloud computing. IBM Journal of Research and Development, 2009,53(4) : 1-17.
  • 3Daniel Nurmi, Rich Wolski, Chris Grzegorczyk et al. The eucalyptus open-source cloud computing system//Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. 2009:124-131.
  • 4Armbrust M, Fox A, Griffith R et al. Above the clouds: A berkeley view of cloud computing. UC Berkley, USA: Technical Report No. UCB/EECS-2009-28, 2009:1-25.
  • 5Vaquero L M, Rodero-Merino L, Caceres Jet al. A break in the clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication Review, 2009, 39(1): 50-55.
  • 6Irwin D, Chase J S, Grit L et al. Sharing networked resources with brokered leases//Proceedings of the USENIX Technical Conference. Boston, MA, USA, 2006:199-212.
  • 7Padala P, Shin K G, Zhu Xiao-Yun et al. Adaptive control of virtualized resources in utility computing environments//Pro ceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007. Lisbon, Portugal, 2007: 289-302.
  • 8Schroeder B, Gibson G A. A large-scale study of failures in high-performance computing systems//Proceedings of DSN2006. Philadelphia, Pennsylvania, USA, 2006:249-258.
  • 9Heath T, Martin R P, Nguyen T D. Improving cluster avail- ability using workstation validation//Proeeedings of the ACM SIGMETRICS. Marina Del Rey, California, USA, 2002. 217-227.
  • 10Tai A T, Tso K S, Sanders W H et al. Chau: A performability-oriented software rejuvenation framework for distributed applicatioas//Proceedings of the 35th DSN 2005. Yokohama, Japan, 2005.570-579.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部