期刊文献+

基于文化基因算法的装夹规划方法 被引量:6

Setup Planning Method Based on Memetic Algorithm
在线阅读 下载PDF
导出
摘要 针对计算机辅助工艺规划中的装夹规划问题,提出一种基于Memetic算法的装夹规划方法。根据零件的几何特征,确定加工特征和最小加工单元,建立零件装夹规划的表示方法。为每个加工单元配置候选的刀具接近方向、机床和刀具等装夹特征,初始化装夹规划种群。通过部分匹配交叉操作和插入变异操作,在全局范围内搜索装夹规划方案。基于加工单元之间的顺序约束,通过二叉树调序算法将非可行解转化为可行解。将加工单元之间的装夹相似性之和作为适应度函数,以适应率为向导进行交叉操作,在非约束加工单元之间进行变异操作,在局部范围内搜索适应度值高的装夹方案。经过种群进化过程,获得最优或者较优的装夹规划方案。通过典型零件的装夹规划验证了该方法的可行性和有效性。 To deal with setup planning in computer aided process planning, a novel setup planning method based on memetic algorithm is proposed. By analyzing geometric characteristics of the part, machining features and units are determined and representation of setup planning is established. The initialize population of setup planning is configured by candidate tool approach direction, machines and cutter for each machining unit. Setup planning is searched in the global scope by partial mapped crossover and insertion mutation. Based on sequence constraints between units, binary tree sort algorithm is adopted to transform from infeasible solution to feasible solution. The sum of the processing methods similarity between machining units is taken as fitness function, setup planning of high fitness value can be acquired in local search by crossover operation based on fitness rate and mutation operation of non-sequential constraint machining units. After the evolution of populations, optimal setup planning solution is generated. Setup planning process of typical part is illustrated to prove the feasibility of the proposed model.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第3期162-169,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51375049) 国家部委预先研究(513180102)资助项目
关键词 装夹规划 文化基因算法 加工顺序约束 setup planning memetic algorithm processing sequence constraints
  • 相关文献

参考文献13

  • 1欧阳华兵,沈斌.面向STEP-NC基于混合式遗传算法的工艺路线优化[J].计算机集成制造系统,2012,18(1):66-75. 被引量:20
  • 2YAO S, HAN X, YANG Y, et al. Computer-aided manufacturing planning for mass customisation: Part 2, automated setup planning[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(2): 205-217.
  • 3ZHANG Y, HU W, RONG Y, et al. Graph-based setup planning and tolerance decomposition for computer-aided fixture design[J]. International Journal of Production Research, 2001, 39(14): 3109-3126.
  • 4张发平,孙厚芳,焦黎.面向CAPP的装夹规程模型与算法研究[J].北京理工大学学报,2006,26(12):1056-1060. 被引量:5
  • 5HUANG W J, HU Y J, CAI L G. An effective hybrid graph and genetic algorithm approach to process planning optimization for prismatic parts[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62 (10). 1219-1232.
  • 6MOJTABA S, REZA T. Application of genetic algorithm to computer-aided process planning in preliminary and detailed planning [J]. Engineering Applications of Artificial Intelligence, 2009, 22(8): 1179-1187.
  • 7SAJAD K. Integrated setup planning and operation sequencing (ISOS) using genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(5): 589-600.
  • 8GUO Y W, LI W D, MILEHAM A R, et al. Applications of particle swarm optimisation in integrated processplanning and scheduling[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(2) : 280-288.
  • 9常智勇,杨建新,赵杰,卫海峰.基于自适应蚁群算法的工艺路线优化[J].机械工程学报,2012,48(9):163-169. 被引量:41
  • 10孙习武,褚学宁,苏於梁,汤岑书.基于聚类分析法的装夹规划算法研究[J].计算机集成制造系统,2009,15(6):1179-1186. 被引量:13

二级参考文献44

共引文献64

同被引文献44

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部