期刊文献+

结合多尺度几何分析和KICA的遥感图像变化检测 被引量:7

Change detection of remote sensing images by multi-scale geometric analysis and KICA
原文传递
导出
摘要 为了进一步提高基于独立分量分析ICA(Independent Component Analysis)的遥感图像变化检测精确度,更好地实现地表覆盖的动态监测,将多尺度几何分析和核独立分量分析KICA(Kernel Independent Component Analysis)相结合应用于遥感图像的地表覆盖变化检测。首先利用Contourlet变换、复Contourlet变换CCT(Complex Contourlet Transform)、非下采样Contourlet变换NSCT(Nonsubsampled Contourlet Transform)等多尺度几何分析对土地遥感图像进行多尺度分解;然后对分解后的数据进行核独立分量分析,通过核函数将数据映射到高维特征空间中,再在该空间中用ICA方法分离出互相独立的分量;最后将分离后的地表变化分量转化为图像分量,再采用最大类间方差法对变化图像进行分割,实现地表覆盖的变化检测。给出了本文方法和近年来提出的基于ICA、基于KICA、基于小波变换和ICA等变化检测方法的实验结果,并进行了分析和定量比较。实验结果表明,基于多尺度几何分析和KICA的变化检测方法能更好地分离出遥感图像的变化信息,其中基于NSCT和KICA方法的错判和漏检误差最小,且在边缘细节方面处理得更好,而基于Contourlet变换和KICA方法的检测效率相对较高。 Remote sensing images are usually affected by light, angle, and other factors, thereby resulting in nonlinear mixed characteristics of a surface object spectrum. Thus, linear methods, such as Independent Component Analysis (ICA), have limitations. Kernel Independent Component Analysis (KICA) achieves nonlinear transformation through the kernel function, and the data are mapped into a high-dimensional feature space, where the data are analyzed by ICA. As a result, detection errors from nonlinear mixing of the surface object spectrum are considerably reduced. Remote sensing images are usually large and complex. If they are analyzed directly by KICA, the computation will be large. Therefore, we propose a change detection method of remote sensing images of land cover based on multi-scale geometric analysis and KICA. First, multl-scale decomposition of remote sensing images is conducted by using multi-scale geometric analysis methods, such as contourlet transform, complex contourlet transform, and Nonsubsampled Contourlet Transform (NSCT). The decomposed components are transformed into partitioned vectors, which consist of low-frequency and high-frequency components. The vectors are then analyzed by KICA and mapped into a high-dimensional feature space by the kernel function, so that the mixing pattern of vectors is linear. In the space, mutually independent components are separated by ICA. The change component of land cover is selected and transformed into an image component. The change image is transformed into a binary image by using automatic thresholding method, and the final change detection result is obtained. Experimental results of the proposed method and recently proposed methods based on ICA, KICA, as well as wavelet and ICA are presented. Analysis and quantitative comparisons are conducted. Based on subjective visual effects, the isolated points and discrete regions in the results obtained by the proposed method decreased compared with those obtained by the methods based on ICA, KICA, as well as wavelet transform and ICA. The land edge is fully retained in the case of less isolated points, thereby reflecting more accurately actual change information of the surface. According to objective quantitative indicators, such as erroneous error, omission error, overall accuracy, and running time, the proposed method is more accurate than the methods based on ICA, KICA, as well as wavelet transform and ICA. The overall accuracy of the method based on NSCT and KICA is the highest, whereas the method based on contourlet transform and KICA shows a relatively high computational efficiency. Our method can separate change information of remote sensing images better. The method based on NSCT and KICA exhibits the smallest misjudgment and misdetection errors and preserves edge details better. The method based on contourlet and KICA shows relatively high detection efficiency.
出处 《遥感学报》 EI CSCD 北大核心 2015年第1期126-133,共8页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:60872065) 农业部农业科研杰出人才基金和农业部农业信息技术重点实验室开放基金(编号:2013001) 江西省数字国土重点实验室开放基金(编号:DLLJ201412) 江苏高校优势学科建设工程资助项目
关键词 变化检测 核独立分量分析KICA 多尺度几何分析 CONTOURLET变换 非下采样CONTOURLET变换 change detection, Kernel Independent Component Analysis (KICA), multi-scale geometric analysis, contourlet transform, Nonsubsampled Contourlet Transform (NSCT)
  • 相关文献

参考文献20

  • 1Bach F R and Jordan M I. 2003. Kernel independent component analy- sis. The Journal of Machine Learning Research, 3 : 1 - 48 [ DOI : 10.1162/153244303768966085 ].
  • 2Camps-Vails G, Gomez-Chova L, Munoz-Mari J, Rojo-Alvarez J L and Martinez-Ramon M. 2008. Kernel-based framework for muhitempo- ral and muhisource remote sensing data classification and change detection. IEEE Transactions on Geo~ience and Remote Sensing, 46(6) : 1822 - 1835 [ DOI: 10.1109/TGRS. 2008. 916201 ].
  • 3Celik T. 2009. Multlscale change detection in multitemporal satellite images. IEEE Geoscience and Remote Sensing Letters, 6 (4) : 820 - 824 [DOI : 10.1109/LGRS. 2009. 2026188 ].
  • 4陈克明,周志鑫,卢汉清,胡文龙,孙显.Gaussian process approach to change detection for high resolution remote sensing image[J].遥感学报,2012,16(6):1192-1204. 被引量:6
  • 5陈敏,江云菲,习鑫,刘志刚.核独立成分分析在图像处理中的应用[J].计算机应用研究,2008,25(1):297-299. 被引量:7
  • 6Do M N and Vetterli M. 2005. The eontourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14(12) : 2091 -2106 [DOI: 10. 1109/TIP. 2005. 859376 ].
  • 7Durucan E and Ebrahimi T. 2001. Change detection and background extraction by linear algebra. Proceedings of the IEEE, 89 (10) : 1368 - 1381 [DOI: 10. 1109/5. 959336].
  • 8范海生,马蔼乃,李京.采用图像差值法提取土地利用变化信息方法——以攀枝花仁和区为例[J].遥感学报,2001,5(1):75-80. 被引量:54
  • 9Hyvarinen A, Karhunen J and Oja E. 2001. Independent Component Analysis. Toronto: John Wiley and Sons.
  • 10Khaparde A. 2012. Study of ICA algorithm for separation of mixed ima- ges// Proceedings of the 2nd International Conference on Digital Information and Communication Technology and it's Application. Bangkok: IEEE: 82 - 86 [DOI: 10. ll09/DICTAP. 2012. 6215334].

二级参考文献101

共引文献143

同被引文献78

  • 1李俊山,马颖,赵方舟,郭莉莎.改进的Canny图像边缘检测算法[J].光子学报,2011,40(S1):50-54. 被引量:64
  • 2戴芹,马建文,欧阳赟,哈斯巴干.利用贝叶斯网络进行遥感变化检测[J].中国图象图形学报,2005,10(6):705-709. 被引量:12
  • 3高国荣,刘冉,羿旭明.一种改进的基于小波变换的图像边缘提取算法[J].武汉大学学报(理学版),2005,51(5):615-619. 被引量:30
  • 4林辉,莫登奎,熊育久,孙华.高分辨率遥感图像均值调整法分割技术研究[J].中南林学院学报,2006,26(4):85-88. 被引量:13
  • 5赵凌,张祖荫,郭伟.基于数学形态学的毫米波图像边缘检测方法[J].国土资源遥感,2006,18(4):19-22. 被引量:8
  • 6Deer P. Digital Change Detection Techniques: Civilian and Mili- tary Application [ M ]. London : Taylar & Francis, 1999 : 1-250.
  • 7Celik T, Ma A K. Muhitemporal image change detection using undecimated discrete wavelet transformand active contours [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 2(49) : 706-717.
  • 8Csaba B, Xavier D, Josiane Z. Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth-death dynamics[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1 ) :33-50.
  • 9Rajesh S, Devkar D, Kale K V. Change detection in optical ima- ges using image fusion technique [ J ]. International Journal of Advanced Research in Computer Science and Software Engineer- ing, 2014, 4(8) :226-233.
  • 10Luo W, Li H L. PCA based unsupervised change detection for color satellite images under the quaternion model [ C ]//Interna- tional Symposium on Intelligent Signal Processing and Communi- cation Systems. Chengdu: IEEE, 2010: 14.

引证文献7

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部