期刊文献+

一种基于特征选择的入侵检测方法 被引量:13

An Intrusion Detection Method Based on Feature Selection
在线阅读 下载PDF
导出
摘要 针对入侵检测中网络数据高维度、大规模所带来的问题,基于特征选择方法 Fisher在网络安全数据集中的应用,提出一种基于特征选择的通用入侵检测框架.该方法通过提取关键特征,降低安全数据的维度;采用K近邻方法作为分类器,验证特征选择后的检测效果.实验结果表明,该方法能在较少特征的情况下达到较高的检测率,具有较好的可行性. This paper concerns about the problems about processing large-scale and high dimension network datasets in intrusion detection.The typical feature selection algorithm Fisher was used in network security datasets,in order to reduce the dimension of features.K-nearest neighbor algorithm was used as the classify algorithm,to evaluate the detection rate.A general intrusion detection framework based on feature selection was presented and realized.Experiments show it has a satisfying detection accuracy with less features and a good feasibility.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第1期112-116,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61103197) 吉林省重大科技专项基金(批准号:2011ZDGG007)
关键词 入侵检测 Fisher特征选择 K近邻算法 intrusion detection Fisher feature selection K-nearest neighbor algorithm
  • 相关文献

参考文献11

二级参考文献145

共引文献542

同被引文献102

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:237
  • 2杨智君,田地,马骏骁,隋欣,周斌.入侵检测技术研究综述[J].计算机工程与设计,2006,27(12):2119-2123. 被引量:48
  • 3毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 4徐燕,李锦涛,王斌,孙春明.基于区分类别能力的高性能特征选择方法[J].软件学报,2008(1):82-89. 被引量:83
  • 5Weller-Fahy D J, Borghetti B J, Sodemann A A. A Survey of distanceand similarity measures used within network intrusion anomaly detection [J]. IEEE Communication Surveys & Tutorials, 2014, 44(1): 66-83.
  • 6Hu W M, Gao J, Wang Y G, et al. Online adaboost-based parameterized methods for dynamic distributed network intrusion detection [J]. IEEE Tranzaction on Cybernetics, 2015,17(1): 70-92.
  • 7Yao H B, Tian L. A genetic-algorithm-based selective principal component analysis [9](GA-SPCA) method for high-dimensional data feature extraction [J]. IEEE Transactions on Geoscience and Kemote Sensing, 2003, 4I(6): 1469-1478.
  • 8Chow T W S, Huang D. Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information [J]. IEEE Trans. Neural Networks, 2005, 16(1): 213-224.
  • 9Schmidt W F, Kraaijveld M A, Duin R P W. Feed forward neural networks with random weights[C]//Proceedings of 11th IAPR International Conference. The Hague, Netherlands:IEEE,1992: 1-4.
  • 10Wang D, Alhamdoosh M. Evolutionary extreme learning machine ensemble with size control [J]. Neurocomputing, 2013, (102): 98-110.

引证文献13

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部