期刊文献+

可测系数广义线性常微分方程的周期解(英文) 被引量:1

Periodic Solutions of Generalized Linear Ordinary Differential Equations with Measures as Coefficients
在线阅读 下载PDF
导出
摘要 本文利用ω-周期解的定义和广义常微分方程理论,得到了广义线性常微分方程初值问题的ω-周期解,所得结果是对线性常微分方程周期解的本质推广. In this paper, by using the definition ofω-periodic solutions and generalized ordinary differential equation theory, the ω-periodic solutions to the initial value problem of generalized linear ordinary differential equations are obtained. These results generalize the current periodic solution to linear ordinary differential equation.
出处 《工程数学学报》 CSCD 北大核心 2014年第6期930-942,共13页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11061031)
关键词 广义线性常微分方程 初值问题 周期解 generalized linear ordinary differential equations initial value problem periodic solutions
  • 相关文献

参考文献2

二级参考文献14

  • 1Lakshimikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore: World Scientific, 1989.
  • 2Federson M. Generalized ODE approach to impulsive retarded functional differential equations[J]. Differ- ential and Integral Equations, 2006, 19(11): 1201-1234.
  • 3Kurzweil J. Generalized ordinary differential equations and continuous dependence on a parameter[J]. Czechoslovak Mathematical Journal, 1957, 7(3): 418-449.
  • 4Schwabik S. Generalized Ordinary Differential Equations[M]. Singapore: World Scientific, 1992.
  • 5Schwabik S. Generalized Ordinary Differential Equations[M]. Singapore: World Scientific, 1992.
  • 6Kurzweil J. Generalized ordinary differential equations and continuous dependence on a parameter[J]. Czechoslovak Mathematical Journal, 1957, 7(3): 418-449.
  • 7Federson M, Schwabik S. Stability for retared functional differential equationsfJ]. Ukrainian Mathematial Journal, 2008, 60(1): 121-140.
  • 8Federson M, Schwabik S. Generalized ODEs approach to impulsive retarded differential equationsfJ]. Differential and Integral Equations, 2006, 19(11): 1201-1234.
  • 9Wyderka Z. Periodic solutions of linear differential equations with measures as coefficients [J]. Acta Univer-sitatis Palackianae Olomucensis Facultas Rerum Naturalium Mathematica, 1996, 35(1): 199-214.
  • 10李宝麟,梁雪峰.一类脉冲微分系统的有界变差解[J].数学研究,2008,41(2):192-198. 被引量:8

共引文献3

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部