期刊文献+

Mild hypothermia combined with neural stem cell transplantation for hypoxic-ischemic encephalopathy: neuroprotective effects of combined therapy 被引量:12

Mild hypothermia combined with neural stem cell transplantation for hypoxic-ischemic encephalopathy: neuroprotective effects of combined therapy
暂未订购
导出
摘要 Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27-28~C) can increase the survival rate of neural stem cells (1.0 x 105/~tL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hy- pothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our findings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inflammatory and an- ti-apoptotic mechanisms. Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27-28~C) can increase the survival rate of neural stem cells (1.0 x 105/~tL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hy- pothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our findings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inflammatory and an- ti-apoptotic mechanisms.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第19期1745-1752,共8页 中国神经再生研究(英文版)
基金 supported by the National Natural Science Foundation of China,No.81271382
关键词 nerve regeneration brain injury hypoxic-ischemic encephalopathy neural precursorcells HYPOTHERMIA neural stem cells cell transplantation hippocampus neuron cell apoptosis ASTROCYTES oligodendrotytes NEUROPROTECTION NSFC grants neural regeneration nerve regeneration brain injury hypoxic-ischemic encephalopathy neural precursorcells hypothermia neural stem cells cell transplantation hippocampus neuron cell apoptosis astrocytes oligodendrotytes neuroprotection NSFC grants neural regeneration
  • 相关文献

参考文献3

二级参考文献11

共引文献10

同被引文献114

引证文献12

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部