期刊文献+

基于模型性能评估的递推PLS建模及应用 被引量:4

Recursive PLS modeling based on model performance assessment and its application
在线阅读 下载PDF
导出
摘要 为了降低递推部分最小二乘(RPLS)建模方法的模型校正频率,开发了一种基于模型性能评估的RPLS(MPA-RPLS)模型。首先,根据过程的初始特性,自动生成模型的置信限,以均方根误差(RMSEP)为性能指标,评估模型性能;依据模型性能的评估结果,选择性地启动模型校正和置信限校正。然后,引入滑动平均滤波器消除过程变量中的噪声,探讨噪声对模型性能的影响程度。最后,将MPA-RPLS模型应用于一个化学反应过程——C8芳烃临氢异构化过程,基于大量工业数据,进行仿真验证。仿真结果表明:本文开发的模型仅以微小的精度损失换取了模型计算效率的大幅提高(即模型校正频率大幅下降);滑动平均滤波器可有效地处理变量的噪声,改善模型的预测精度。 In order to reduce the model updating frequency of recursive partial least squares (RPLS) modeling methods, a RPLS model based on the model performance assessment (MPA-RPLS) is developed. Firstly, a confidence limit of the model is generated automatically based on the initial behavior of a process. And a root mean squared error of prediction (RMSEP) is used as a performance index to evaluate the model. Base on the results of the model performance assessment, the model updating is selectively activated, in the meanwhile, the confidence limit is also updated. Subsequently, a moving average filter is integrated into the model to eliminate the noise embbeded in variables, and the effect of the noise on the model performance is then investigated. At last, the developed model is applied to a chemical reaction process, hydro-isomerization process of Cs-aromatics. Simulation is run based on a large number of industrial data. The simulation results show that the computational efficiency is improved greatly (model updating frequency is reduced greatly) by the developed model, while a minor loss of the prediction accuracy is found. The noise embedded in variables could be dealt with effectively by the moving average filter, hence the prediction accuracy is improved.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第12期4875-4882,共8页 CIESC Journal
基金 国家自然科学基金项目(61203133 61203072 61304125)~~
关键词 递推PLS 模型 性能评估 滑动平均滤波器 化学反应过程 模拟 recursive partial least squares model performance assessment moving average filter chemical
  • 相关文献

参考文献20

  • 1王春鹏,于佐军,孟凡强.折息移动窗递推PLS算法及其在聚丙烯生产过程中的应用[J].化工学报,2013,64(12):4592-4598. 被引量:8
  • 2Liu J, Chen D, Shen J. Development of self-validating soft sensors using fast moving window partial least squares [J]. Industrial & Engineering Chemistry Research, 2010,49:11530-11546.
  • 3邵伟明,田学民,王平.基于递推PLS核算法的软测量在线学习方法[J].化工学报,2012,63(9):2887-2891. 被引量:9
  • 4Kadlec P, Grbi R, Strandt S. Data-driven soft sensors in the process industry [J]. Computers & Chemical Engineering, 2009,33:795-814.
  • 5Kadlec P, Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction [J]. AIChE Journal, 2011,57:1288-1301.
  • 6Kadlec P, Grbi R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors [J]. Computers & Chemical Engineering, 2011,35:1-24.
  • 7Helland K, Bemtsen H E, Borgen O S, Martens H. Recursive algorithm for partial least squares regression [J]. Chemometrics & Intelligent Laboratory Systems, 1992,14:129-137.
  • 8Qin S J. Recursive PLS algorithms for adaptive data modeling [J], Computers & Chemical Engineering, 1998, 22:503-514.
  • 9雒娅楠,邱志刚,宋诗哲,董飒英,王洪仁,于辉.PVD法及与电镀复合制备光纤腐蚀传感器的Fe-C合金敏感膜[J].化工学报,2004,55(6):947-951. 被引量:7
  • 10Mu S, Zeng Y, Liu R, Wu P, Su H, Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process [J]. Journal of Process Control, 2006,16:557-566.

二级参考文献70

共引文献47

同被引文献39

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部