期刊文献+

基于压缩感知与尺度不变特征变换的图像配准算法 被引量:32

Image Registration Algorithm Based on Sparse Random Projection and Scale-Invariant Feature Transform
原文传递
导出
摘要 尺度不变特征变换(SIFT)算法是图像配准中一种用来描述局部特征最稳健,使用最广泛的方法。针对存在关键点特征描述向量维数较高,算法计算复杂的问题,提出了一种基于稀疏随机投影(SRP)与SIFT相结合的图像配准算法,该算法把压缩感知理论的稀疏特征表示概念引入SIFT算法中,即SRP-SIFT,用稀疏特征表示方法对SIFT关键点特征向量进行提取,再使用相应的L1距离度量进行特征向量的匹配。对新算法和相关SIFT算法进行了图像配准实验,实验结果表明,SRP-SIFT算法对包含复杂结构内容的图像配准性能优于传统SIFT算法,配准效率与几种改进的SIFT算法相当,但运算速度比传统SIFT算法和几种改进的SIFT算法有明显提高。 Scale-invariant feature transform (SIFT) is one of the most robust and widely used local feature descriptor for image registration, however, the computational complexity of its key point descriptor computing stage is quite expensive and also the dimensionality of the key point feature vectors is relatively high. For speeding up the SIFT computation, a novel sparse random projection (SRP) based algorithm, namely SRP-SIFT, is proposed by combining SIFT with sparse feature representation methods from the compressive sensing theory. Accordingly, L1 norm is introduced to compute the similarity and dissimilarity between feature vectors used for image registration. The experimental results show that the proposed SRP-SIFT algorithm is much faster than the standard SIFT algorithm while the performance is favorably comparable when performing complex structured scene image registration applications.
作者 杨飒 杨春玲
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第11期98-102,共5页 Acta Optica Sinica
基金 国家自然科学基金(60972135)
关键词 图像处理 尺度不变特征变换 压缩感知 特征提取 稀疏随机投影 image processing scale-invariant feature transform compressive sensing feature extraction sparserandom projection
  • 相关文献

参考文献18

  • 1D G Lowe. Object recognition from local scaleqnvariant features [C]. Proceedings of the International Conference on Computer, ICCV, 1999, 2: 1150-1157.
  • 2D G Lowe. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2), 91-110.
  • 3K Mikolajezyk, C Schmid. A performance evaluation of local deseriptore [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10), 1615-1630.
  • 4Y Ke, R Sukthankar. PCA-SIFTE A more distinctive representation for local image descriptors [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 2: 506-513.
  • 5A E A Hakim, A A Farag. CSIFT & A SIFT descriptor with color invariant characteristics [ C] . IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 2: 1978-1983.
  • 6H Bay, T Tuytelaars, L V Gool. SURF: speeded up robust features [C]. Proceedings of the ninth European Conference on Computer Vision, 2006. 404-417.
  • 7G S Yu, J M Morel. ASIFT: a new framework for fully affine invariant image comparison [ J ]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-460.
  • 8Haihua Cui, Wenhe Liao, Ning Dai, et al.. Registration and integration algorithm in structured light three-dimensional scanning based on scale-invariant feature matching of multi-source images [J]. Chin Opt Lett, 2012, 10(9): 091001.
  • 9王民,刘伟光.基于改进SIFT特征的双目图像匹配算法[J].计算机工程与应用,2013,49(2):203-206. 被引量:28
  • 10E Candes, J Romberg, Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans Information Theory, 2006, 52(2) : 489-509.

二级参考文献79

  • 1赵春晖,刘春红,王克成.基于第二代小波的超谱遥感图像融合算法研究[J].光学学报,2005,25(7):891-896. 被引量:12
  • 2张强,郭宝龙.基于成像系统物理特性的多光谱图像与全色波段图像融合[J].光学学报,2007,27(2):243-248. 被引量:12
  • 3张磊,王书茂,陈兵旗,刘志刚.基于双目视觉的农田障碍物检测[J].中国农业大学学报,2007,12(4):70-74. 被引量:25
  • 4Cand&E J,Romberg J,Tao T.Signal recovery from incomplete and inaccurate measurements[J].Comm Pure Appl Math,2005,59(8):1207-1223.
  • 5Donoho D L,Stark P B.Uncertainty principles and signal recovery[J].SIAM J Applied Math,1989,49:906-931.
  • 6Cand'es E,Romberg J.Quantitative robust uncertainty principles and optimally sparse decompositions[J].Foundations of Comput Math,2006.
  • 7Cand'es E,Tao T.Near optimal signal recovery from random projections and universal encoding strategies[J].IEEE Trans Inform Theory,2004.
  • 8Cand'es E J,Tao T.Decoding by linear programming[J].IEEE Trans Inform Theory,2005,51(12):4203-4215.
  • 9Donoho D.Compressed sensing[J].IEEE Trans Inf Theory,2006,52(4):1289-1306.
  • 10Lowe D G.Distinctive image features from scale-invariant keypoints[J].lnternational Journal of Computer Vision, 2004, 60(2) :91-110.

共引文献125

同被引文献224

引证文献32

二级引证文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部