期刊文献+

Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells

Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells
原文传递
导出
摘要 Low temperature photoluminescence (PL) measurements have been performed for a set of GaN/AlxGal xN quantum wells (QWs). The experimental results show that the optical full width at half maximum (FWHM) increases relatively rapidly with increasing A1 composition in the AlxGal xN barrier, and increases only slightly with increasing GaN well width. A model considering the interface roughness is used to interpret the experimental results. In the model, the FWHM's broadening caused by the interface roughness is calculated based on the triangle potential well approximation. We find that the calculated results accord with the experimental results well. Low temperature photoluminescence (PL) measurements have been performed for a set of GaN/AlxGal xN quantum wells (QWs). The experimental results show that the optical full width at half maximum (FWHM) increases relatively rapidly with increasing A1 composition in the AlxGal xN barrier, and increases only slightly with increasing GaN well width. A model considering the interface roughness is used to interpret the experimental results. In the model, the FWHM's broadening caused by the interface roughness is calculated based on the triangle potential well approximation. We find that the calculated results accord with the experimental results well.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期562-565,共4页 中国物理B(英文版)
基金 supported by the National Basic Research Program of China(Grant No.2012CB619306) the National High Technology Research and Development Program of China(Grant No.2011AA03A101)
关键词 GaN/A1GaN quantum wells interface roughness optical full width at half maximum GaN/A1GaN quantum wells, interface roughness, optical full width at half maximum
  • 相关文献

参考文献26

  • 1Taniyasua Y and Kasu M 2010 Appl. Phys. Lett. 96 221110.
  • 2Pernot C, Kim M, Fukahori S, Inazu T, Fujita T, Nagasawa Y, Hirano A, Ippommatsu M, Iwaya M, Kamiyama S, Akasaki I and Amano H 2010 Appl. Phys. Express 3 061004.
  • 3Nakamura S, Senoh M, S Nagahama, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umenoto H, Sano Mand Chocho K 1998 Appl. Phys. Lett. 72 1939.
  • 4Li D B, Sun X J, Song H, Li Z M, Chen Y R, Jiang H and Miao G Q 2012 Adv. Mater. 24 845.
  • 5Li D B, Sun X J, Song H, Li Z M, Chen Y R, Miao G Q and Jiang H 2011 Appl. Phys. Lett. 98 011108.
  • 6Arulkumaran S, Sakai M, Egawa T, Ishikawa H, Jimbo T, Shibata T, Asai K, Sumiya S, Kuraoka Y, Tanaka M and Oda O 2002 Appl. Phys. Lett. 81 1131.
  • 7Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024.
  • 8Kneissl M, Yang Z H, Teepe M, Knollenberg C, Schmidt O, Kiesel P, Johnson N M, Schujman S and Schowalter L J 2007 J. Appl. Phys. 101 123103.
  • 9Lee S N, Son J K, Paek H S, Sung Y J, Kim K S, Kim H K, Kim H, Sakong T, Park Y, Ha K H and Nam O H 2008 Appl. Phys. Lett. 93 091109.
  • 10Gurusinghe M N, Davidsson S K and Andersson T G 2005 Phys. Rev. B 72 045316.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部