摘要
依据在陕西杨凌获得的冬小麦试验资料,用Morris法和EFAST(extended Fourier amplitude sensitivity test)法分析了CERES-Wheat模型输出变量中小麦开花期、成熟期、产量、地上生物量对品种和生长参数的敏感性,并分析比较了两种方法的一致性。结果表明,光周期影响因子(P1D)、出苗-穗分化期积温(P1)、穗分化-挑旗期积温(P2)和春化影响因子(VEFF)均对开花期和成熟期较敏感,灌浆期积温(P5)对成熟期有较大影响;挑旗前、后的光能利用率(PARUE,PARU2)、P1D、P1和P2均对产量和生物量有较大影响;最适条件下标准籽粒质量(G2)和开花期单位地上生物量的籽粒数(G1)对冬小麦产量有较大影响,第一标准叶的比叶面积(SLAS)对地上生物量有较大影响。Morris法和EFAST法得到的参数敏感性结果具有较高的相关性,表明计算工作量较小的Morris法较适于筛选模型敏感参数。
Parameter sensitivity analysis is crucial to the process of model localization.In this study,both the Morris and EFAST(extended Fourier amplitude sensitivity test) methods were applied to test the sensitivities of outputs of CERES-Wheat model to its cultivar and ecotype parameters.The wheat crop planted during 2007—2010 was simulated under the potential,attainable and actual yield level at Yangling,Shaanxi Province.CERES-Wheat outputs of interest included anthesis date,maturity date,yield and above-ground biomass.The results showed that the anthesis and maturity dates were highly influenced by photoperiod response(P1D),accumulated temperature in the duration of emergence stage to terminal spike differentiation stage(P1),accumulated temperature in the duration of terminal spike differentiation stage to flag leaf stage(P2),and vernalization effect(VEFF).Moreover,maturity date was sensitive to grain filling phase duration(P5).Yield and above-ground biomass were highly influenced by PAR before and after flag leaf stage(PARUE,PARU2),P1 D,P1 and P2.Moreover,biomass was sensitive to standard kernel size(G2) and kernel number per unit canopy weight at anthesis(G1).The correlation coefficient between the Morris mean and the EFAST total sensitivity index was high,indicating that the Morris method with less computation could be used to select the sensitive model parameters.
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2014年第10期124-131,166,共9页
Transactions of the Chinese Society for Agricultural Machinery
基金
国家高技术研究发展计划(863计划)资助项目(2013AA102904)
高等学校学科创新引智计划(111计划)资助项目(B12007)
关键词
作物模型
TDCC
相关系数
全局敏感性分析
Crop model Top-down concordance coefficient Correlation coefficient Goble sensitivity analysis