期刊文献+

High-performance flexural fatigue of carbon nanotube yarns 被引量:4

High-performance flexural fatigue of carbon nanotube yarns
在线阅读 下载PDF
导出
摘要 Carbon nanotube yarns(CNTY)possess good specific strength and specific conductivity.As such,their potential for commercial applications is significant.Fatigue performance is a significant consideration in yarn/wire applications.In this study,the flexural fatigue performance of CNTY spun from super-aligned carbon nanotube arrays was investigated using a reversed bending test.The results showed that CNTY exhibited excellent resistance to pure flexural fatigue,significantly outperforming stainless steel wire;CNTY failed where a combination of flexural fatigue and tension–tension fatigue had special hollow fracture morphology,and CNTY resistance remained fundamentally unchanged in the combination fatigue process. Carbon nanotube yarns (CNTY) possess good specific strength and specific conductivity. As such, their potential for commercial applications is significant. Fatigue performance is a significant consideration in yarn/wire applications. In this study, the flexural fatigue performance of CNTY spun from super-aligned carbon nanotube arrays was investigated using a reversed bending test. The results showed that CNTY exhibited excellent resistance to pure flexural fatigue, significantly outperforming stainless steel wire; CNTY failed where a combination of flexural fatigue and tension-tension fatigue had special hollow fracture morphology, and CNTY resistance remained fundamentally unchanged in the combination fatigue process.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2014年第29期3831-3834,共4页
基金 supported by the National Natural Science Foundation for Distinguished Young Scholars (51125028) Key Technologies R&D Program of China (2011BAI12B07 and 2012BAI16B01)
关键词 碳纳米管阵列 抗疲劳性能 挠曲 管纱 商业应用 弯曲试验 不锈钢丝 弯曲疲劳 Carbon nanotube yarns Conductivity Flexural fatigue Fracture morphology
  • 相关文献

参考文献14

  • 1lijima S (1991) Nature 354:56-58.
  • 2Jiang K, Wang J, Li Q et al (2011) Adv Mater 23:1154-1161.
  • 3De Voider MF, Tawfick SH. Baughman RH et al (2013) Science 339:535-539.
  • 4Lu W, Zu M, Byun JH et al (2012) Adv Mater 24:1805-1833.
  • 5Park J, Lee KH (2012) Korean J Chem Eng 29:277-287.
  • 6Jarosz P, Schauerman C, Alvarenga J et al (2011) Nanoscale 3:4542-4553.
  • 7Sabelkin V, Misak HE, Mall S et al (2012) Carbon 50:2530-2538.
  • 8Misak HE, Asmatulu R, Sabelkin Vet al (2013) Carbon 52:225-231.
  • 9Misak HE, Sabelkin V, Mall Set al (2012) Carbon 50:4871-4879.
  • 10Liu K, Sun Y, Zhou R et al (2010) Nanotechnology 21:045708 164.

同被引文献10

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部