期刊文献+

基于表面肌电的头部运动体态语言情感识别模型 被引量:3

Surface EMG Based Emotion Recognition Model for Body Language of Head Movements
在线阅读 下载PDF
导出
摘要 为了准确识别人机交互中体态语言的情感态度,提出了基于表面肌电的头部运动情感识别模型.针对自发表达"同意"与"不同意"态度的点头与摇头动作招募了8名被试,分别采集颈部头夹肌、胸锁乳突肌和斜方肌的表面肌电信号,通过单因素方差分析提取了这2种情感态度具有显著性差异的10个肌电时域特征向量,将其作为模型的输入变量;再利用Elman神经网络建立点头与摇头的情感识别模型;最后将该模型与基于BP神经网络和支持向量机的情感识别模型进行性能比较.实验结果表明,对测试集中"同意"与"不同意"情感态度的准确识别率超过96%,从而验证了文中模型的可靠性. To recognize emotional attitudes of body language accurately in human-computer interaction, a surface electromyography based emotion recognition model of head movements is proposed. Aiming at analyzing attitudes of agreement and disagreement expressed spontaneously by nodding and shaking head, we recorded the surface electromyographic signals from splenius capitis, sternocleidomastoids and trapeziums of 8 participants. Using one-way domain parameters, with significant differences ANOVA, 10 features of electromyographic time between two attitudes, were extracted as input parameters. The emotion recognition model of head nodding and shaking was constructed using Elman neural network. Finally, the performance of the model was compared with other two emotion recognition models using BP neural network and support vector machine. Experimental results show that correct recognition rates of our model on the test set with agreement and disagreement emotional attitudes are more than 96 %, which demonstrates the reliability of the presented model and method in this paper.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第9期1396-1402,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(51305077) 国家"八六三"高技术研究发展计划(2013AA013705) 中央高校基本科研业务费专项资金(2232013D3-31)
关键词 表面肌电 头部运动 体态语言 情感识别 surface electromyography head movement body language emotion recognition
  • 相关文献

参考文献23

  • 1Fragopanagos N, Taylor J G. Emotion recognition in human- computer interaction [J]. Neural Networks, 2005, 18 (4) : 389-405.
  • 2Darwin C. The expression of the emotions in man and animals [M]. 3rd eds. New York: Oxford University Press, 1998.
  • 3Mehrabian A. Nonverbal communication [M]. Chicago: Aldine-Atherton, 1972.
  • 4Ekman P. An argument for basic emotions [J]. Cognition Emotion, 1992, 6(3/4): 169-200.
  • 5Zhao Y S. Human emotion recognition from body language of the head using soft computing techniques [D]. Ottawa: University of Ottawa, 2012.
  • 6Baron Cohen S. Mind reading: the interactive guide to emotions-version 1.3 [M]. London: Jessica Kingsley, 2007.
  • 7Bousmalis K, Mehu M, Pantic M. Towards the automatic detection of spontaneous agreement and disagreement based on nonverbal behavior: a survey of related cues, databases, and tools[J]. Image and Vision Computing, 2013, 31(2) : 203- 221.
  • 8Vinciarelli A, Pantic M, Bourlard H. Social signal processing: survey of an emerging domain [J]. Image and Vision Computing, 2009, 27(12): 1743-1759.
  • 9Murphy-Chutorian E, Trivedi M M. Head pose estimation in computer vision: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(4): 607-626.
  • 10王健.sEMG信号分析及其应用研究进展[J].体育科学,2000,20(4):56-60. 被引量:183

二级参考文献95

共引文献214

同被引文献26

  • 1许纲.偏瘫后上肢及手的双侧训练[J].中华物理医学与康复杂志,2007,29(4):275-279. 被引量:4
  • 2张旭.基于表面肌电信号的人体动作识别与交互[D].合肥.中国科技大学,2010:9-10.
  • 3FRISOLI A, PROCOPIO C, CHISARI C, et al. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke[J]. Journal of Neuroengineering and Rehabilitation, 2012, 9(1): 36.
  • 4KREBS H I, VOLPE B T, AISEN M L, et al. Increasing productivity and quality of care: robot-aided neuro-rehabilitation[J]. Journal of Rehabilitation Research and Development, 2000, 37(6): 639-652.
  • 5LOUREIRO R, AMIRABDOLLAHIAN F, TOPPING M, et al. Upper limb robot mediated stroke therapy-GENTLE/s approach[J]. Autonomous Robots, 2003, 15(1): 35-51.
  • 6YUBO Z, ZIXI W, LINHONG J, et al. The clinical application of the upper extremity compound movements rehabilitation training robot[C]∥9th International Conference on Rehabilitation Robotics.[S.l]: IEEE, 2005: 91-94.
  • 7吴銮.基于FPA的手指康复器研究[D].杭州: 浙江工业大学, 2012.
  • 8CAURAUGH J H, LODHA N, NAIK S K, et al. Bilateral movement training and stroke motor recovery progress: a structured review and meta-analysis[J]. Human Movement Science, 2010, 29(5): 853-870.
  • 9LUM P S, BURGAR C G, VAN DER LOOS M, et al. The MIME robotic system for upper-limb neuro-rehabilitation: Results from a clinical trial in subacute stroke[C]∥9th International Conference on Rehabilitation Robotics. [S.l]: IEEE, 2005: 511-514.
  • 10FRISOLI A, LOCONSOLE C, LEONARDIS D, et al. A new gaze-BCI-Driven control of an upper limb exoskeleton for rehabilitation in real-world tasks[J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2012, 42(6): 1169-1179.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部