期刊文献+

BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS

BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS
在线阅读 下载PDF
导出
摘要 In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameter α goes to zero. In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameter α goes to zero.
作者 彭艳
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第4期1271-1286,共16页 数学物理学报(B辑英文版)
基金 Supported by the Natural Science Foundation of China(11001095 and 11001096)
关键词 nonlinear evolution equations vanishing diffusion limit convergence rates boundary layer BL-thiekness nonlinear evolution equations vanishing diffusion limit convergence rates boundary layer BL-thiekness
  • 相关文献

参考文献3

二级参考文献24

  • 1Temam R, Wang X M. Asymptotic analysis of oseen type equations in a channel at small viscosity. Indiana University Math J, 1996, 45(3): 863-916
  • 2Schlichting H. Boundary Layer Theory. 7th Edition. McGrawHall, 1987
  • 3Temam R, Wang X M. Boundary layers associated with incompressible Navier-Stokes equations: the noncharacteristic boundary case. J Diff Equs, 2002, 179:647-686
  • 4Temam R, Wang X. Asymptotic analysis of the linearized Navier-Stokes equations in a channel. Differential & Integral Equations, 1995, 8:1591-1618
  • 5Xin Z, Zhang L. On the global existence of solutions to the Prandtl's system. Adv Math, 2004, 181(1): 88-133
  • 6Sammartino M, Caflisch E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space Ⅰ and Ⅱ. Commun Math Phys, 1998, 192: 433-416, 463-491
  • 7Balian R, Peube J L, Ed. Fluid Dynamics. New York: Gordon and Breach Science Publishers, 1977
  • 8Batchelor G K. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press, 1967
  • 9Constantin P, Wu J. Inviscid limit for vortex patches. Nonlinearity, 1995, 8:735-742
  • 10Crandall M, Ishii H, Lions P L. User's guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc, 1992, 27(1): 1-67

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部