期刊文献+

重磁反演约束条件及三维物性反演技术策略 被引量:48

RESTRICTIONS IN GRAVITY AND MAGNETIC INVERSIONS AND TECHNICAL STRATEGY OF 3D PROPERTIES INVERSION
在线阅读 下载PDF
导出
摘要 重磁资料反演与其他地球物理反演一样也存在严重的多解性 ,要想得到好的结果 ,必须附加约束条件 ,而且尽可能是各种约束的组合。三维反演中多解性更加严重 ,同时与约束的结合又更加艰难。非线性的广义随机算法使反演求解过程稳定 ,约束条件容易结合 ,但计算速度和维数困难同样制约其发挥作用 ,采取针对性措施后 。 Like other geophysical inversions, gravity and magnetic inversions can produce severe ambiguous solutions. Therefore, special constraints must be introduced in the process of inversion so as to obtain a unique and stable interpretation. In 3D case, the situation is worse in that the solution is more ambiguous and the combination of constraints is more difficult. The application of nonlinear inversion makes the interpretation more stable and the introduction of constraints easier than previous linear methods. In addition, the difficulties caused by nonlinear methods, such as the high dimensional searching and the low computation speed, can be tackled and well solved by special pertinent skills. After improvement the application of 3D inversion will surely be more practical than before.
出处 《物探与化探》 CAS CSCD 2002年第4期253-257,共5页 Geophysical and Geochemical Exploration
基金 国家重点基础研究发展规划项目 (G2 0 0 0 0 4670 1) 国家自然科学基金项目 (4 95 0 40 5 940 0 740 2 6)
关键词 重磁反演 约束条件 三维反演 广义随机算法 存储技术 gravity and magnetic inversions constraints 3D inversion
  • 相关文献

参考文献38

  • 1[1]Backus G E,Gilbert F. Numerical application of a formalism for geophysical inverse problems[J]. Geophys J Roy Astr Soc, 1967,13:247-276.
  • 2[2]Backus G E,Gilbert F. The resolving power of gross earth data[J]. GeophysJ Roy AstrSoc, 1968,16:169-205.
  • 3[3]Parker R L. Best bounds on density and depth from gavity data[J].Geophysics, 1974,39:644-649.
  • 4[4]Parker R L. The theory of ideal bodies for gravity interpreta tion[J]. Geophys J Roy Astr Soc, 1975,42:315-334.
  • 5[5]Huestis S P, Parker R L. Bounding the thickness of oceanic magnetized layer[J]. J Geophys Res, 1977,82:5293-5303.
  • 6[6]Ander M E, Huestis S P. Gravity ideal bodies[J]. Geophysics, 1987,52: 1265- 1278.
  • 7[7]Hoed A E,Kennard R W. Ridge regression: Biased estimation for nonorthogonal problems[J]. Technometrics, 1970,12: 55 -67.
  • 8[8]Lanczos C. Linear differential operators[R]. D Van Nostrand Co,1961.
  • 9[9]Medeiros W E,Silva J B C,Loures L G C L. Symmetric and di rectionally smooth gravity inversion[A]. 62nd Annual Interna tional Meeting[C]. Tulsa:SEG, 1992,529-532.
  • 10[10]Li Y,Oldenburg D W. 3-D inversion of magnetic data[J]. Geophysics, 1996,61:394-408.

同被引文献639

引证文献48

二级引证文献396

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部