期刊文献+

一种改进的相联规则提取算法 被引量:8

An Improved Algorithm for Mining Association Rules
在线阅读 下载PDF
导出
摘要 相联规则的提取是数据挖掘的一个重要方面。Apriori算法是提取相联规则的经典算法,效率较高。AprioriPro算法是对Apriori算法的改进,它利用大项集生成过程中的中间结果对数据库进行过滤,从而加快候选项集的计数速度,提高了整个算法的效率。该文在AprioriPro算法的基础上,首先对其基本理论进行扩展并加以证明,提出了AprioriPro2算法。该算法相对于AprioriPro算法能更多地去掉数据库中的无效元组,从而进一步提高了算法的效率。 Mining Association Rule in database is an important aspect of Data Mining.Algorithm Apriori is a classic and efficient algorithm to mine association rule in database.Algorithm AprioriPro is an improved one based on Apriori algorithm,which uses meta -result of large -items produced to filter the database.Compared with Apriori algorithm,it speeds up the counting of candidate large -items and improves the efficiency of the whole algorithm.Based on the algorithm Apriori and AprioriPro,this paper shows an improved algorithm AprioriPro2.At first,the theory,which algorithm AprioriPro is based on,is extended and proved.Then algorithm AprioriPro2is given.Algorithm AprioriPro2can filter more no-use records in database than AprioriPro,and hence improves the efficiency more greatly.
出处 《计算机工程与应用》 CSCD 北大核心 2002年第15期173-174,208,共3页 Computer Engineering and Applications
关键词 相联规则提取算法 数据挖掘 知识发现 数据库 APRIORI算法 计算机 data mining,association rule,knowledge discovery in database
  • 相关文献

参考文献2

二级参考文献1

  • 1Han J,Proc of the 21st Int’l Conf on very Large Data Bases,1995年,420页

共引文献18

同被引文献37

  • 1徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 2陈耿,朱玉全,杨鹤标,陆介平,宋余庆,孙志挥.关联规则挖掘中若干关键技术的研究[J].计算机研究与发展,2005,42(10):1785-1789. 被引量:62
  • 3何典,梁英.动态网页环境下的Web使用记录挖掘研究[J].微计算机信息,2006,22(08S):122-124. 被引量:6
  • 4Agrwal R,Srikan R.Fast Algorithms for Mining Association Rules in Large Databases.Proc.of the Twentieth International Conference on Very Large Databases,Santiago,Chile 1994,9:487-499.
  • 5Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Item in Large Database [C]. In:Proceedings of the ACM SIGMOD Conference on Management of Data,Washington DC: ACM Press NY 1993: 207--216.
  • 6Han J, Kambr M.Data Mining: Concepts and Techniques[ M]. Beijing Higher Education Press, 2001.
  • 7JiaweiHan MichelineKamber 范明 孟小峰 译.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001..
  • 8Srivastava J,Cooley R,Deshpande M,et al.Web Usage Mining:Discovery and Applications of Usage Patterns from Web Data[J].SIGKDD Explorations,Newsletter of SIGKDD,2000,(1):12-23.
  • 9J Han,M Kamber.数据挖掘概念和技术[M].北京:机械工业出版社,2001,152-156.
  • 10李雄飞,李军.类关联规则生成的算法[M].北京:高等教育出版社,2003.118-144.

引证文献8

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部