期刊文献+

多模态函数优化的协同多群体遗传算法 被引量:33

COORDINATE MULTI-POPULATION GENETIC ALGORITHMS FOR MULTI-MODAL FUNCTION OPTIMIZATION
在线阅读 下载PDF
导出
摘要 讨论了多模态函数优化的遗传算法 ( GA)求解方法 .分析了传统的基于排挤选择模型和基于适应值共享的 GA方法的特点和不足 ,应用模式理论研究了 GA群体进化行为 .提出了宏观小生境思想和协同多群体 GA的基本框架和详细算法流程 ,并给出了一种自动小生境半径估计方法 .采用典型函数进行了实例计算 ,结果表明了协同多群体 GA的有效性 . Traditional GA adopts crowding or fitness-sharing technique to evolve multi-solutions in a single population, which does not conform to the natural evolution of species and is also with the difficulty of parameter design. We analyze the characteristics of GA evolution of population and species evolution in nature, and formulate the logic of macro-niching method based on multi-populations, and describe its work flow in detail. Moreover, we design a new algorithm for calculating niche radius automatically. Finally, the coordinate multi-population GA is applied to the optimizations of typical multi-modal functions, and the experiments reveal its efficiency and effectiveness.
出处 《自动化学报》 EI CSCD 北大核心 2002年第4期497-504,共8页 Acta Automatica Sinica
基金 国家自然科学基金 ( 70 1710 0 2 6 9974 0 2 6 )资助
关键词 多模态函数优化 遗传算法 多群体 小生境技术 Functions Mathematical models Optimization
  • 相关文献

参考文献10

  • 1[1]Richard K Belew, Michael D Vose. Foundations of Genetic Algorithms 4. San Francisco, Calif: Morgan Kaufmann Publishers, Inc., 1997
  • 2[2]Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge, Mass: The MIT Press, 1996
  • 3[3]De Jong K A. Genetic algorithms: A 25 year perspective. In: Proceedings of the Fifth International Conference on Genetic Algorithms,Los Altos,CA: Morgan Kaufmann Publishers, 1993
  • 4[4]Mahfoud S W. Crowding and pre-selection revisited. In: Parallel Problem Solving from Nature, Manner R, Manderick B (eds.). Berlin: Springer, 1992. 67~76
  • 5[5]Mengshoel O J, Goldberg D E. Probabilistic crowding: Deterministic crowding with probabilistic replacement. In: Proceedings of the Genetic and Evolutionary Computation Conference 1999 (GECCO-99),Banzhaf W et al.(eds.). San Fransisco, CA: Morgan Kaufmann, 1999. 173~179
  • 6[6]Goldberg D E, Deb K, Horn J. Massive multi-modality, deception, and genetic algorithms. In: Manner R, Manderick B (eds.), Parallel Problem Solving from Nature, Berlin: Springer, 1992. (2):37~46
  • 7[7]Beasley D, Bull D R, Martin R R. A sequential niche technique fo r multi-modal function optimization. Evolutionary Computation, 1993,1(2):101~125
  • 8[8]Harik G. Finding multi-modal solutions using restricted tournament selection. In: Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA 6), Eshelman L J (ed.), San Francisco, CA: Morgan Kaufmann, 1995. 24~3 1
  • 9[9]Miller B L, Shaw M J. Genetic Algorithms with dynamic niche sharing for multi-modal function optimization. In: IEEE International Conference on Evolutionary Computation, Piscataway, NJ: IEEE Press, 1996. 786~791
  • 10[10]Goldberg D E, Wang L. Adaptive niching via co-evolutionary sharing. In Genetic Algorithms in Engineering and Computer Science, Quagliarella et al. (eds.). Chichester: John Wiley and Sons, Ltd. 1997, 21~38

同被引文献309

引证文献33

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部