期刊文献+

基于递归神经网络的多步预报方法 被引量:5

Multi-Step Forecasting Method Based on Recurrent Neural Networks Model
在线阅读 下载PDF
导出
摘要 为了解决由多层前馈神经网络递推运算获得的多步预报存在的预报误差迭代累积问题 ,提出了基于局部递归神经网络的多步递归神经网络 (MSRN)模型 ,对时间序列进行了多步预报 .用模拟振动数据把MSRN模型用作单步和多步的预报能力 ,同经典的多层前馈神经网络进行了比较 ,并预报了天津石化总公司炼油厂大机组某测点振动的变化趋势 实践表明 ,用该方法进行多步预报误差小 ,并具有良好的预报能力 . In order to solve the problem of the traditional feedforward neural networks with a long term prediction, an alternative neural model, Multi step Recurrent Neural Model (MSRN), based on a partially recurrent neural network is proposed. For the recurrent model, a learning phase with the purpose of long term prediction is imposed, which allows to obtain better predictions of time series in future. In order to validate the performance of the recurrent neural model to predict the dynamic behavior of the series in the future, two different data time series have been used. An artificial data time series and the vibration data measured from real time series are used to compare the ability of multi step prediction. The results show that the MSRN model can confribute to a good accuracy of prediction.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2002年第7期722-725,756,共5页 Journal of Xi'an Jiaotong University
关键词 递归神经网络 预报方法 多步预报 时间序列 预报误差 预报能力 MSRN模型 multi step prediction neural networks time series
  • 相关文献

参考文献1

二级参考文献3

  • 1徐光华,博士学位论文,1995年
  • 2林振山,北京大学学报,1992年,28卷,5期,596页
  • 3谢爱林,硕士学位论文,1991年

共引文献3

同被引文献24

  • 1宋晓华,方坤礼.基于UG的凸轮机构设计和运动仿真[J].机械研究与应用,2005,18(1):102-104. 被引量:20
  • 2[1]Cholewo T,Zurada J M.Sequential network construction for time series prediction[A].Proceedings of the IEEE International Joint Conference on Neural Networks[C].Houston:IEEE Computer Association,1997.2 034~2 039.
  • 3[3]Aussem A.Dynamical recurrent neural networks towards prediction and modeling of dynamical systems[J].Neurocomputing,1999(28):207~232.
  • 4[5]Wakuya H,Zurada J M.Bi-directional computing architecture for time series prediction [J].Neural Networks,2001,1(14):130 7~132 1.
  • 5张晋西.VisualBasic与AutoCAD二次开发[M].北京:清华大学出版社,2002..
  • 6ARNAUD P,BOUVIER C, CISNEROS L,et al. Influence of rainfall spatial variability on flood prediction[J]. Journal of Hydrology,2002,260: 216-230.
  • 7BEVEN K,WOOD E F,SIVAPALAN M. On hydrological heterogeneity: catchment morphology and catchment response[J]. Journal of Hydrology,1988,100:129-138.
  • 8COLLIER C G. Chapter 8,weather radar precipitation data and their use in hydrological modelling[A]. In: ABBOTT M B,eds.Distributed Hydrological Modelling[C]. Dordrecht: Kluwer Academic Publishers,1996.143-163.
  • 9BATHURST J C.Physically-based distributed modeling of upland catchment using Système Hydrologique Europèen[J]. Journal of Hydrology,1986,87:79-102.
  • 10ZHAO Ren-jun. The Xinanjiang model applied in China[J]. Journal of Hydrology,1992,135: 371-381.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部