摘要
本文从Euler-Bernoulli梁出发,对弹性地基采用Winkler假定,建立了问题的数学模型.然后对空间变量和时间变量分别进行Fourier变换和Laplace变换,利用逆变换褶积积分,得到了弹性地基无限长梁一般动力问题的解析解.最后对自由振动,脉冲激励和运动载荷情况分别进行了讨论.
Based on the theory of Euler-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variable and convolution theorem for their inverse transformations, a general solution for dynamical problem of infinite beam on an elastic foundation is obtained. Finally,the cases of free vibration, impulsive response and moving load are also discussed.
出处
《应用数学和力学》
EI
CSCD
北大核心
1991年第7期593-597,共5页
Applied Mathematics and Mechanics
关键词
弹性地基
梁
动力问题
一般解
elastic foundation, infinite beam, dynamical problem, general solution, integral transformation method