期刊文献+

挖掘区间值关系数据库的模糊关联规则 被引量:4

Mining fuzzy association rules in interval valued relational database
在线阅读 下载PDF
导出
摘要 应用关系数据的模糊C 均值算法把数量型属性划分成若干个模糊集 ,提出挖掘区间值关系数据库数量型属性模糊关联规则的算法 .在关系数据的模糊C 均值算法与竞争聚集算法的基础上提出一种新的模糊聚类算法———关系数据的竞争聚集算法 ,并用它来划分数量型属性 .由于关系数据的竞争聚集算法能得到优化的固定的聚类个数 ,因此能挖掘出优化的模糊关联规则 . The quantitative attributes are partitioned into several fuzzy sets by the relational fuzzy C-means algorithm, and the algorithm for mining quantitative fuzzy association rules in interval valued relational database is provided. A new fuzzy clustering algorithm-relational competitive agglomeration algorithm is provided based on the relational fuzzy C-means algorithm and the competitive agglomeration algorithm, and it is used to divide the quantitative attributes into several fuzzy sets. The optimal fuzzy association rules can be mined due to the optimal fixed clustering number that can be obtained by the relational competitive agglomeration algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2002年第3期387-391,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目 ( 6 9975 0 2 4) 国家自然科学基金重点资助项目 ( 6 99310 40 )
关键词 数据库 模糊关联规则 区间值 数据控制 C-均值算法 聚集算法 interval values data mining relational fuzzy C-means algorithm relational competitive agglomeration algorithm association rules
  • 相关文献

参考文献1

二级参考文献4

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1334
  • 2范建华.基于云理论的数据开采技术及其在指挥自动化系统中的应用[M].南京:中国人民解放军通信工程学院,1999..
  • 3范建华,博士学位论文,1999年
  • 4Li Deyi,Proc of the Joint Int’l Conf and Sym posium on Logic Program ming,1996年,38页

共引文献27

同被引文献40

  • 1Inderjit S D, Eharmendra S M. Concept decompositions for large sparse text data using clustering [ J]. Machine Learning, 2001, 42(1) : 143 - 175.
  • 2Hathaway R J, Davenport J W, Bezdek J C. Relational dual of the c-means algorithms [J]. Pattern Recognition, 1989,22(2) : 205 - 212.
  • 3Hathaway R J, BezAek J C. NERF c- means: non-euclidean relational fuzzy clustering [J]. Pattern Recognition, 1994,27(3) : 429 - 437.
  • 4Krishnapuram R, Joshi A, Yi L. A fuzzy relative of the kmedoids algorithm with application to web document and snippet clustering [ A]. In: Proceedings IEEE Ind Conference Fuzzy Systems-FUZZ_IEEE 1999[C]. Korea, 1999. 1281-1286.
  • 5Frigui H, Krishnapuram R. Clustering by competitive agglomeration [J]. Pattern Recognition, 1997, 30(7): 1109-1119.
  • 6Setnes M, Kaymak U. Extended fuzzy c-means ruth volume prototypes and cluster merging [ A]. In: Proceedings of Sixth European Congress on Intelligent Techniques and Soft Computing [C]. Aachen, Germany, 1998. 1360-1364.
  • 7Lamehamedi H, Bensaid A D, Kebbal E G, et al. Adaptive programming: application to a semi-supervised point prototype clustering algorithm [A]. In: International Conference on Parallel and Distributed Processing Techniques [C]. Nevada, USA, 1999. 2753-2759.
  • 8L A Zadeh.Fuzzy sets[J].Information and Control,1965;8(3):338-353.
  • 9Agrawal R,Imielinske T,Swami A.Mining association rules between sets of items in large databases[C].In:proceedings of the ACM SIGM OD Int Conf on the Management of Data,Washington DC,1993-05: 207-216.
  • 10Srikant R,Agrawal R.Mining quantitative association rules in large relational tables[C].In:proceedings of the ACM SIGMOD Int Conf on the Management of Data,Montreal Canada,1996.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部