期刊文献+

基于BP神经网络预测模型的CLDH/PP复合材料制备 被引量:2

Preparation of CLDH/PP Composites Based on BP Neural Network Prediction Model
在线阅读 下载PDF
导出
摘要 采用超声波辐射对水滑石(LDH)进行离子交换有机改性。基于正交设计试验结果,以p H值、温度、时间、超声功率为四个输入量,以插层率为输出量,建立3层反向传播(BP)神经网络模型,对其进行训练和预测性能检验,并用以预测超声有机改性水滑石(CLDH)制备的条件。研究表明,与未改性水滑石/聚丙烯(LDH/PP)相比,CLDH在PP基体中团聚现象基本消失,与PP基体相容性增加,因此有利于提高聚丙烯的性能。 Hydrotalcite (LDH)was modified by ion exchange under ultrasonic radiation.Based on the results of orthogonal design,a three-layer back propagation (BP)neural network model was established with pH,temperature,time,ultrasonic power as four inputs and intercalated rate as output.The model was used to train and predict the performance test and forecast the preparation conditions of ultrasonic organic modified hydrotalcite (CLDH).The results of dispersion study show that comparing with unmodified hydrotalcite/polypropylene (LDH/PP),the agglomeration phenomenon of CLDH would disappear in PP matrix,and the compatibility with PP matrix could increase,therefore it is beneficial to improve the properties of PP.
作者 陈楠 耿立艳 支景鹏 CHEN Nan;GENG Li-yan;ZHI Jing-peng(School of Economics &Management,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;School of Materials and Metallurgy,Guizhou University,Guiyang 550025,China)
出处 《塑料工业》 CAS CSCD 北大核心 2018年第12期46-50,共5页 China Plastics Industry
基金 国家自然科学基金青年项目(61503261) 国家自然科学基金项目(51763002)
关键词 反向传播神经网络 预测 超声改性 复合材料 BP Neural Network Prediction Ultrasonic Modification Composite Material
  • 相关文献

参考文献6

二级参考文献61

共引文献20

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部