期刊文献+

神经模糊网络自适应模糊控制研究 被引量:2

Study on Adaptive Fuzzy Control of Neural Fuzzy Network (NFN)
在线阅读 下载PDF
导出
摘要 提出了一种由样品辨识、模糊推理和控制处理 3个子网模块构成的基于知识的多层神经网络 .这种网络由各子网分别构成并按照最初的模糊控制结构适当连接而建立 ,具有明确区分各组成子网功能及其知识流结构 .由于综合了模糊逻辑的推理过程及神经网络的学习能力 ,使它能够在其结构中以模糊规则的形式引入语言知识并通过网络的训练及自学习对这些知识进行加工 ,从而实现了真正意义上的自适应模糊控制器 .最后还讨论了这种 NFN is a multiplayer neural network based on knowledge, and it is composed of three modular subnets used for pattern recognition, fuzzy reasoning and control processing. A NFN combines the reasoning procedure of fuzzy logic with the learning capability of neural network. It can incorporate linguistic knowledge in the form of fuzzy rules in its structure and then process the knowledge through training and self learning of the network. The application of NFN to control of unknown nonlinear dynamic processes is discussed. A simulation result is presented to illustrate this idea.
出处 《西安石油学院学报(自然科学版)》 2002年第1期62-65,共4页 Journal of Xi'an Petroleum Institute(Natural Science Edition)
关键词 神经模糊网络 模糊逻辑控制 自学习 自适应 模块结构 neural fuzzy network fuzzy logic control self learning
  • 相关文献

参考文献11

  • 1[1]Wang F Y. Building knowledge structure in neural nets using fu zzy logic, Robotics and manufacturing: recent trends in research, Education and application[M]. ASME press, NY, 1992.
  • 2[2]Wang F Y. Design of adaptive fuzzy control systems using neural network s[C]. Proc. of the 1st Chinese world congress on intelligent control and inte lligent automation, Beijing, China, 1993.516-522.
  • 3[3]Wang F Y, Cheng D Q. Learning laws for neural network implementation of f uzzy control systems[C]. Proc. of IEEE int. Conf. on systems, man and cyberne tics, San Antonio, TX, 1994.
  • 4[4]Wang F Y, Kim H M, Zhou M C. Dynamic backpropagation for neuro-fuzzy net works[C]. Proc. of int. conf. on electronics and information technology, Be ijing, China, 1994.
  • 5[5]Kim H M, Wang F Y. Design of adaptive neuro-fuzzy controllers[C]. Pro c. of IEEE int. conf. on systems, man and cybernetics, San Antonio, TX, 1994.
  • 6[6]Wang F Y, Kim H M. Implementing adaptive fuzzy logic controllers wi th neural network: a design paradigm[J]. J. intell. fuzzy syst. 1995, 3: 165- 180.
  • 7[7]Shan z, Kim H M ,Wang F Y. Plant identification and performance optimizat ion for neuro-fuzzy networks[C]. Proc. of IEEE int. conf. on systems, man an d cybernetics, Beijing, China, 1996.
  • 8[8]Yager R R. Implementing fuzzy logic controllers using a neural network[ J]. Fuzzy sets and Systems, 1992,48(1):53-64.
  • 9[9]Nguyen D H, Widrow B. Neural networks for self-learning control sys tems[J]. IEEE control systems magazine. 1990,22(3):18-23
  • 10[10]Miller III W T, Sutton R S, Werbos P J. Neural networks for con trol[M]. MIT press, Cambridge, MA, 1990.

同被引文献20

  • 1He S Z. Design of an on - line rule - adaptive fuzzy control system [ A]. IEEE Int. Conf. on Fuzzy Systems [ C]. Sam Diego,USA, 1992,83 - 91.
  • 2Zhang Jianwei, Wali Baqai and Alois Knoll. A comparative study of B-Spline fuzzy controller and RBFN, In Proceedings of 4th European Workshop on Fuzzy Decision Analysis and Recognition Technology, Dortmund,1999
  • 3Wang Feiyin. Building knowledge structure in neural nets using fuzzy logic, Robotics and manufacturing: recent trends in research, Education and application. ASM Epress, 1992
  • 4Zhang Jianwei and Alois Knoll. Desiging fuzzy controllers by rapid learing. Fuzzy stes and systems, 1999,101(2)
  • 5S. Mitaim and B. Kosko. What is the best shape of a fuzzy set in function approximation. IEEE, international conference on fuzzy systems,1996
  • 6Zhang Jianwei and A. Knoll. Constructing fuzzy controllers with B-Spline models-principles and applications. Interational journal of intelligent systems,1997
  • 7Zhang Jianwei, K.V. Le and A. Knoll. Unsupervised learning of control spaces based on B-Spline models. Proceeding inf. IEEE international conference of fuzzy systems,1997
  • 8Zhang Jianwei, Knoll A. and K.V.Le. A new type of fuzzy logic system for adaptive modeling and control. Proceeding of the international conference on computational intelligence, Dortmund,1997, springer Verlag
  • 9Wang Feiyin,Cheng Digan. Cheng, Learning laws for neural net-work implementation of fuzzy control systems. Proc. of IEEE int. Conf. on systems, man and cybernetics, SabAntonio,1994
  • 10Wang Feiyin, Kim H M, Zhou M C, Dynamic backprop-agation for neuro-fuzzy networks. Proc. of int. conf. on electronics and information technology, Beijing, China,1994

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部