期刊文献+

由等距基点直接构造插值多项式的一种新算法

A NEW ALGORITHM ALLOWING DIRECT CONSTRUCTION OF POLYNOMIAL INTERPOLATING FUNCTIONS WITH EQUALLY-SPACED DATA POINTS
在线阅读 下载PDF
导出
摘要 现有插值方法,一般都不把插值函数直接表示为代数多项式。本文将提出一种求取插值多项式的分次算法(split-degree argorithm),可由插值多项式的高次项到其相邻的低次项,通过十分简单的运算,每次算出两个项的系数。本算法的使用限制是插值基点必须等间距。由于本法使用的是相邻差商或差分,故计算工作量小,计算速度快,且可手算。本文算法非常独特,它既不是拉格朗日法,也不是牛顿法。 Interpolation methods so far available do not give the interpolating functions directly in the form of algebraic polynomials. The split-degree method of interpolation which the present paper has put forward gives a unique algorithm. With this method the construction of interpolating algebraic polynomials can be carried out by obtaining simultaneously two coefficients of a higher-degree term and its adjacent lower-degree term at a time and in a very simple way. The new algorithm involves only the calculation of adjacent quotient-differences or simply, adjacent differences, thus minimizing the calculation and allowing a fast computing speed. The method is neither Lagrange nor Newton method. A limitation of its application is the requirement of equally-spaced data points.
作者 孙德辉
出处 《航空学报》 EI CAS CSCD 北大核心 1989年第10期B540-B544,共5页 Acta Aeronautica et Astronautica Sinica
关键词 数值逼近 代数插值 曲线拟合 numerical approximation, algebraic interpolation, curve fitting.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部