摘要
该文主要研究一个带连续分布时延且具有强核的神经网络。作者发现当平均时延参数增加时,系统的状态从稳定变化到振荡现象;当平均时延参数继续增加时,又从振荡变为稳定。这一特殊的动力学现象对于具有弱核的神经网络是不可能发生的,用平均时延作分岔参数,作者也证明了Hopf分岔的存在性。用计算机仿真实验表明所得的结论的正确性。
In this paper, a neural network with strong kernel and continuously time delay is mainly investigated. A switch from stability to instability may occur for certain range of the parameters arid must then be followed by a switch back to stability. Bifurcation phenomena of this model are also investigated. Using the mean time delays as a bifurcation parameter, authors have proven that Hopf bifurcation parameter passes through a critical value. Some computer simulations illustrate correctness of the results.
出处
《电子与信息学报》
EI
CSCD
北大核心
2001年第7期687-692,共6页
Journal of Electronics & Information Technology
基金
中国博士后科学基金
关键词
稳定性
振荡
连续分布时延
神经网络
HOPF分岔
动力学
Stability, Oscillation, Continuously distributed time delay, Neural network, Hopf bifurcation