期刊文献+

水下目标识别中样本选择与SVME融合算法 被引量:7

Instance Selection and SVM Ensembles for Underwater Acoustic Target Recognition
在线阅读 下载PDF
导出
摘要 水下目标识别中训练样本集含有冗余样本、噪声样本及无关样本,且特征提取、特征选择和决策系统设计过程分离而导致系统识别性能的下降,为此提出了基于加权最近邻收缩样本选择的SVM集成算法(SVME-WRNN)和基于加权免疫克隆样本选择的SVM集成算法(SVME-WICISA)。这2种集成方法通过样本选择来构建精度高、差异大的子分类器,并将其集成。利用4类水下目标实测数据进行了分类仿真实验。实验结果表明:SVME-WRNN算法和SVME-WICISA算法与SVME算法(无样本选择)相比较,在识别率相当的情况下,大幅度地降低了训练样本数目,得到的综合分类器具有良好的分类精度。 Because the training instance set for recognizing underwater acoustic targets contains many noise sam-ples, redundant samples and irrelevant samples, and because the systems for feature extraction, feature selection and decision making are designed separately, the underwater acoustic target recognition performance declines. Hence we propose the SVM ensemble based on weighted reduced nearest neighbor ( SVME-WRNN) and the SVM ensemble based on weighted immune clone instance selection algorithm(SVME-WICISA). The ensembles use in-stance selection to build precise and diverse sub-classifiers and then combine them. We simulate the classification of the measurement data of four types of underwater acoustic targets. The simulation results, given in Figs.3, 4 and 5 and Table 3, and their analysis show preliminarily that, compared with the SVME without instance selection, the two ensembles can greatly reduce the number of training instances when their classification accuracy is almost the same and that the combined classifier has satisfactory classification accuracy.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第3期362-367,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60672136) 水下测控技术重点实验室基金(9140C260505120C26104)资助
关键词 噪声 算法 决策 特征提取 支持向量机 水声学 样本选择 目标识别 加权免疫克隆样本选择算法 加权最近邻收缩 acoustic noise, algorithms, decisionacoustics instance selection, targetweighted reduced nearest neighbormaking, feature extraction,support vector machines,recognition, weighted immune clone instance selectionunderwateralgorithm,
  • 相关文献

参考文献5

二级参考文献52

共引文献56

同被引文献65

  • 1纪正飚,王吉林,赵力.基于模糊K近邻的语音情感识别[J].微电子学与计算机,2015,32(3):59-62. 被引量:11
  • 2侯振雨,蔡文生,邵学广.主成分分析-支持向量回归建模方法及应用研究[J].分析化学,2006,34(5):617-620. 被引量:40
  • 3杜方键,杨宏晖.K均值聚类优化集成学习[J].声学技术,2011,30(4):32-34.
  • 4戴键,杨宏晖.基于水声目标识别的自适应免疫克隆特征选择算法[J].声学技术,2011,30(4):106-109.
  • 5Roberto batti. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5(4): 537-550.
  • 6Gushan kumar, Krishan kumar. A novel evaluation function for feature selection based upon information theory[C]//Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference on, vol., no., pp.000395-000399, 8-11 May 2011.
  • 7刘先康,梁菁,任杰,等.修正最近邻模糊分类算法在舰船目标识别中的应用.计算机工程与应用,2010;46(9):228—231.
  • 8Denoeux T. A K-nearest neighbor classification rule based on Demp- ster-Shafer theory. IEEE Trans on Systems, Man and Cybernetics, 1995; 25(05) : 804-813.
  • 9Smarandache F, Dezert J. Advances and applications of DSmT for information fusion. Rehoboth: American Research Press, 2004.
  • 10Smets P. The transferable belief model. Artificial Intelligence, 1994;66(2) :191-243.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部