期刊文献+

调制宽带转换器与多陪集采样在稀疏多频带信号采样中的应用 被引量:7

The application of the modulated wideband converter and multi-coset sampling in sampling of the sparse multiband signals
原文传递
导出
摘要 目前研究的亚奈奎斯特采样方法有调制宽带转换器和多陪集采样,二者都是用于获取时间连续、频谱稀疏信号的采样方法,多陪集采样是非均匀的亚奈奎斯特采样,调制宽带转换器是均匀的奈奎斯特采样.从采样方法、频谱支撑区恢复、信号重构和复杂度等方面,对调制宽带转换器与多陪集采样在稀疏多频带信号采样中的应用进行分析.仿真实验结果表明,在相同的平均采样速率下,调制宽带转换器的均方误差大于多陪集采样,但多陪集采样对各通道时延的精确要求给其硬件实现带了很大困难,而调制宽带转换器易于在实际应用中允许的误差范围内硬件实现. Nowadays,the methods of sub - Nyquist sampling studies are the modulated wideband converter and multi - coset sampling and both of which are sampling methods used to acquire continuous - time signals with sparse spectra. However, multi - coset sampling is a non - uniform sub - Nyquist method and the modulated wideband converter is a uniform one. The modulated wideband converter and multi - coset sampling with applications in the sparse multi - band signals are discussed from sampling methods, the spectrum support recovery, signal reconstruction and complexity. The experimental results showed that, at the same average sampling rate, the modulated wideband converter can be implemented by using hardware with an allowable error, and the multi - coset sampling needs a precise time - delay and is difficult to implement by using hardware, although the MSE of the modulated wideband converter is larger than the multi - coset sampling.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期477-483,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(U1231122)
关键词 亚奈奎斯特采样 调制宽带转换器 多陪集采样 稀疏多频带信号 Sub - Nyquist sampling modulated wideband converter multi - coset sampling sparse multi-band signals
  • 相关文献

参考文献23

  • 1MISHALI M, ELDAR Y C, DOUNAEVSKY O, et al. Xampling:Analog to digital at sub -Nyquist rates [ J ]. IET Circuits, De- vices & Systems,2011,5( 1 ) :8-20.
  • 2LANDAU H J. Necessary density conditions for sampling and interpolation of certain entire functions [ J ]. Acta Mathematica, 1967,117 ( 1 ) : 37-52.
  • 3PAPOULIS A. Generalized sampling expansion[ J]. IEEE Transactions on Circuits and Systems, 1977,24( 11 ) :652-654.
  • 4BLACK Jr W C, HODGES D. Time interleaved converter arrays [ J ]. IEEE Journal of Solid - State Circuits, 1980,15 ( 6 ) : 1 022-1 029.
  • 5DONLHO D L. Compressed sensing[ J ]. IEEE Transactions on Information Theory ,2006,52 (4) :1 289-1 306.
  • 6CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete fre- quency information [ J ]. IEEE Transactions on Information Theory,2006,52 (2) :489-509.
  • 7CANDES E J, WAKIN M B. An introduction to compressive sampling[ J ]. IEEE Signal Processing Magazine ,2008,25 (2) :21- 30.
  • 8HERLEY C, WONG P W. Minimum rate sampling and reconstruction of signals with arbitrary frequency support [ J ]. IEEE Transactions on Information Theory, 1999,45 (5) :1 555-1 564.
  • 9MISHALI M, ELDAR Y C. Blind muhiband signal reconstruction : Compressed sensing for analog signals [ J ]. IEEE Transac- tions on Signal Processing, 2009,57 ( 3 ) : 993-1009.
  • 10MISHALI M, ELDAR Y C. From theory to practice : Sub - Nyquist sampling of sparse wideband analog signals [ J ]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2) :375-391.

二级参考文献82

  • 1张杰,廖桂生,王珏.对角加载对信号源数检测性能的改善[J].电子学报,2004,32(12):2094-2097. 被引量:31
  • 2方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 3Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5Candes E. Compressive sampling. Int. Congress of Mathematics, Madrid, Spain, 2006, 3: 1433-1452.
  • 6Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-124.
  • 7Brandenburg K. MP3 and AAC explained. AES 17th international conference on High-Quaiity Audio coding, Erlangen, Germany, Sept. 1999: 1-12.
  • 8Pennebaker W and Mitchell J. JPEG: Still image data compression standard. Van Nostrand Reinhold, 1993.
  • 9Candes E and Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3):969-985.
  • 10Candes E and Tao T. Near-optimal signal recovery from random projections and universal encoding strategies. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.

共引文献180

同被引文献25

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部