期刊文献+

对数copulas函数与一类推广的Frank方程 被引量:2

Logarithmic copulas function and a class of generalized Frank equations
原文传递
导出
摘要 涉及三角模(T)和三角余模(S)的Frank方程,已有很多研究.其问题的提出涉及概率联合分布与边际分布的相互关系,在模糊多值逻辑、模糊偏好评价模型、粗糙集理论等领域有着广泛的应用.利用定义的T,S的对数凸线性函数,讨论了一类Frank方程TSλ=Min·Maxλ(0≤λ≤∞)的解问题,推广了经典Frank方程研究.同时,针对所提出的对数copulas函数,讨论了对数copulas函数与三角模、三角余模之间的关系. Frank equation involved with triangular norm (T) and triangular conorm (S) and dealt with the probability joint distribution and marginal distributions, has been investigated by many scholars. It has been ap- plied in the fuzzy multiple - valued logic, fuzzy preference evaluation model, rough set theory and other fields. The solutions for a class of Frank equations TSλ= Min · Maxλ (0 ≤A≤ ∞ ) are discussed by means of the logarithmic convex linear function, and the classical Frank's equation are generalized. At the same time, the relationship be- tween logarithmic copulas function and triangular norm, triangular conorm are discussed.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期455-463,共9页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(61262022) 甘肃省自然科学基金(1208RJZA251)
关键词 三角模 三角余模 Frank方程 对数copula函数 triangular norm triangular conorm Frank's equation logarithmic copula function
  • 相关文献

参考文献13

  • 1FRANK M J. Associativity in a class of operations on spaces of distribution functions[ J]. Aequationes Mathematicae, 1975,12 (2) :121-144.
  • 2SKLAR A. Fonetions de repartition an dimensions et leurs marges[ J]. Publications de l'Institut de Statistique de l'Universite de Paris, 1959,8:229-231.
  • 3NELSON R B. An introduction to copulas [ M ]. New York:Springer- Vedag,2006.
  • 4FRANK M J. On the simultaneous associativity of F(x, y) and x + y - F(x,y) [ J ]. Aequations Mathematicae, 1979,19 ( 1 ) : 194-226.
  • 5安利平,仝凌云.基于粗集理论的多属性与多准则决策分析综述[J].云南大学学报(自然科学版),2009,31(S1):177-181. 被引量:1
  • 6ALSINA C, FRANK M J, SCHWEIZER B. Associative functions : triangular norms and copulas [ M ]. Singapore: World Scien- tific ,2006.
  • 7CALVO T, MARTIN J, MAYOR G. Convex linear T - S functions : a generalization of Frank' s equation [ J ]. Fuzzy Sets and Systems ,2013,226:67-77.
  • 8SCHWEIZER B, SKLAR A. Associative functions and statistical triangle inequalities [ J ]. Publicationes Mathematicae Debre- cen, 1961,8 : 169-186.
  • 9KLIR G, YUAN B. Fuzzy sets and fuzzy logic : theory and applications [ M ]. NJ: Prentice Hall/Upper Saddle River, 1995.
  • 10NGUYEN H T,WALKER E A. A first course in fuzzy logic[ M]. Boca Raton/Florida:CRC Press, 1997.

二级参考文献30

  • 1安利平,陈增强,袁著祉.多准则分级决策的扩展粗糙集方法[J].系统工程学报,2004,19(6):559-565. 被引量:12
  • 2安利平,陈增强,袁著祉.基于粗集理论的多属性决策分析[J].控制与决策,2005,20(3):294-298. 被引量:16
  • 3Zdzis?aw Pawlak.Rough sets[J]. International Journal of Computer & Information Sciences . 1982 (5)
  • 4SLOWI NSKI R.Rough set learning of preferential at-tributein multi-criteria decision making. Proceedings of the seventh international symposium on methodology for intelligent systems . 1993
  • 5GRECO S,MATARAZZO B,SLOWI NSKI R.Rough set processing of vague information using fuzzy si milarity relations. Finite Versus Infinite-Contributions toan Eternal Dilemma . 2000
  • 6Zopounidis C,Doumpos M.Multi-criteria classification and sorting methods: a literature review. European Journal of Operational Research . 2002
  • 7Yao YY.Constructive and algebraic methods of the theory of rough sets. Journal of Information Science . 1998
  • 8Pawlak Z.Rough sets. International Journal of Computer and Information Sciences . 1982
  • 9Pawlak Z,Skowron A.Rudiments of rough sets. Journal of Information Science . 2007
  • 10Pawlak Z,Slowinski R.Rough set approach to multi-attribute decision analysis. European Journal of Operational Research . 1994

同被引文献13

  • 1PAWLK Z. Rough sets [ J ]. International Journal of Computer and Information Sciences, 1982,11 (5) :341-356.
  • 2NANDA S,MAHMDAR S.Fuzzy rough sets[ J].Fuzzy Sets and Systems, 1992,45(2) :157-160.
  • 3M ORSI N N, YAKOUT M M.Axiomatics for fuzzy rough sets [ J ] .Fuzzy Sets and Systems, 1998,100(1/3) :327-342.
  • 4MI J S,LEUNG Y,ZHAO H Y,et al.Generalized fuzzy rough sets determined by a triangular norm[ J] .Information Sciences, 2008,178(16) : 3203-3213.
  • 5ATANASSOV K T.Intuitionistie fuzzy sets [ J ] .Fuzzy Sets and Systems, 1986,20( 1 ) :87-96.
  • 6ATANASSOV K T.More on intuitionistie fuzzy sets[ J ] .Fuzzy Sets and Systems, 1989,33 (1) :37-45.
  • 7ATANASSOV K T.Intuitionistic fuzzy sets, theory and application [ M ]. Heidelberg: Physiea- Verlag, 1999.
  • 8ZHOU L,WU W Z,ZHANG W X.On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implica- tions [ J ].Information Sciences, 2009,179 (1/2) : 833-808.
  • 9WANG X Z,DONG C R,FAN T G.Training T-S norm neural networks to refine weights for fuzzy if-then rules[J] .Neuro- computing, 2007,70( 13/15 ) : 2581-2587.
  • 10DAVAEY B A, PRIESTLEY H A.Introduction to lsttices and order[ M ]. Cambridge: Cambridge University Press, 1990.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部