期刊文献+

基于PSA-SVRM模型的钢铁企业副产煤气消耗量预测 被引量:6

Consumption Prediction of By-product Gas in Iron and Steel Enterprises Based on PSA-SVRM Model
原文传递
导出
摘要 针对钢铁企业副产煤气消耗量经验模型难以对其进行精确预测的问题,通过分析副产煤气消耗用户及其特点,按不同用户利用支持向量机对副产煤气消耗量进行分类,依托Powell算法、模拟退火法和支持向量回归机各自的性质及特点,构建了副产煤气消耗量预测模型,并依托企业实际数据对模型进行验证.结果表明,对烧结、炼钢、连铸3个主工序60个步长的测试分类准确率分别为94.8%,94.9%和100%,模型预测的相对平均误差分别为2.5%,2.8%和2.1%,表明模型适用于副产煤气消耗量预测.Wilcoxon符号秩检验验证了模型的有效性. In order to deal with the problem that empirical model of by-product gas consumption in iron and steel enterprises cannot accurately predict the by-product gas consumption, the analysis of by-product consumption user and its characteristics is carried out. Support vector machine is used to classify the by-product gas consumption. It combines Powell calculation, simulated annealing arithmetic calculation, and support vector regression machine(SVRM), a model of PSA(Powell simulated annealing)-SVRM to predict the by-product gas consumption has been established. By-product gas consumption data in some iron and steel enterprises are used in the model. The results show that the prediction accuracy for sintering, steelmaking and continuous casting processes is 94.8%, 94.9% and 100%, respectively, with the relative mean error of 2.5%, 2.8% and 2.1%, respectively, which indicates that this PSA-SVRM model is suitable to prediction of the by-product gas consumption. Wilcoxon sign rank test proves the effectiveness of PSA-SVRM model.
作者 杨波
出处 《过程工程学报》 CAS CSCD 北大核心 2014年第3期462-468,共7页 The Chinese Journal of Process Engineering
关键词 副产煤气 支持向量回归机 参数优化 POWELL算法 模拟退火法 by-product gas support vector regression machine parameter optimization Powell calculation simulated annealing arithmetic calculation
  • 相关文献

参考文献25

二级参考文献107

共引文献413

同被引文献72

  • 1杨晓帆,陈廷槐.人工神经网络固有的优点和缺点[J].计算机科学,1994,21(2):23-26. 被引量:73
  • 2谢海波,徐旭东,刘相华,王国栋.层流冷却过程中带钢温度场数值模拟[J].钢铁研究学报,2005,17(4):33-35. 被引量:5
  • 3陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:348
  • 4谭文,许云波,刘振宇,吴迪.层流冷却方式对中厚板温度场影响的数值模拟[J].东北大学学报(自然科学版),2006,27(8):887-890. 被引量:7
  • 5蔡九菊,王建军,陆钟武,殷瑞钰.钢铁企业物质流与能量流及其相互关系[J].东北大学学报(自然科学版),2006,27(9):979-982. 被引量:81
  • 6ZHANG S, LI B, WANG B. The application of an improved integration algorithm of support vector machine to the prediction of network security situation [J]. Applied Mechanics and Materials, 2014, 513: 2285-2288.
  • 7AL-MASRI A N, AB KADIR M Z A, HIZAM H, et al. A novel implementation for generator rotor angle stability prediction using an adaptive artificial neural network application for dynamic security assessment [J]. IEEE Transactions on Power Systems, 2013, 28(3): 2516-2525.
  • 8YILMAZ I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine [J]. Environmental Earth Sciences, 2010, 61(4): 821-836.
  • 9VAPNIK V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
  • 10SONG G. Computer network security and precaution evaluation based on incremental relevance vector machine algorithm and ACO [J]. International Journal on Advances in Information Sciences and Service Sciences, 2013, 5(1): 120-127.

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部