期刊文献+

基于压缩传感理论的重构算法研究 被引量:5

Reconstruction algorithm based on compressed sensing
在线阅读 下载PDF
导出
摘要 针对国内压缩传感理论(CS)尚处于起步以及理论研究阶段,为深入阐述该理论及对其实践应用性进行探索,将压缩传感理论从信号的稀疏表示、编码测量以及重构算法3个方面展开了较为详细的论述,并深入地阐述了重构算法中具有代表性的匹配追踪、正交匹配追踪、正则化正交匹配追踪算法。并进一步介绍了最小均方差线性估计(MMSE)算法,通过与常用重构算法的仿真对比,突出了MMSE算法在低采样率下的优越性。研究结果表明,该算法在实践中具有较好的应用潜力。 Aiming at introducing and using compressive sensing(CS)into practice, CS was discussed in detail from sparse representation, encoding measurement and reconstruction algorithms. The commonly used reconstruction algorithms, such as matching pursuit, orthogonal matching pursuit and the regularized orthogonal matching pursuit, were reviewed. The minimum mean square error (MMSE) linear estimatealgorithm, which showed better reconstruction quality under low sampling rate, was introduced as well. Through the image simulation, compared with commonly used reconstruction algorithms, the results indicate that MMSE shows great superiority and potential for real applications.
出处 《机电工程》 CAS 2014年第6期805-808,818,共5页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(51005077) 教育部高学校博士学科点科研基金资助项目(博导类 20133514110008) 国家卫生和计划生育委员会科研基金资助项目(WKJ-FJ-27) 福建省杰出青年基金资助项目(2011J06020) 福建省质量技术监督局科技资助项目(FJQI2013095 FJQI2012024) 福建省高等学校学科带头人培养计划资助项目(闽教人[2013]71号)
关键词 压缩传感 稀疏性 信号处理 信号重构 重构算法 MMSE compressive sensing sparsity signal processing signal reconstruction algorithms minimum mean square error(MMSE)
  • 相关文献

参考文献5

二级参考文献205

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 3Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 4Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 5Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 6Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 7Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 8Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 9Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598
  • 10Mancera L, Portilla J. Lo-norm-based sparse representation through alternate projections. In: Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2006. 2089-2092

共引文献954

同被引文献70

  • 1蒋明虎.旋流分离技术研究及其应用[J].大庆石油学院学报,2010,34(5):101-109. 被引量:41
  • 2刘振全,李海生,陈英华,彭斌.基于Pro/E和VB的涡旋压缩机动平衡计算[J].兰州理工大学学报,2005,31(5):61-63. 被引量:2
  • 3Donoho D L. Compressed sensing[J]. IEEE Trans- actions on Information Theory, 2006, 52 (4): 1289-1306.
  • 4Candts E J, Romberg J, Tao T. Robust uncertainty principles, Exact signal reconstruction from highly.incomplete frequency information"J]. IEEE Transac- tions on Information Theory, 2006, 52(2) : 489-509.
  • 5Cand~s E J. Compressive sampling['J]. Proceedings of the International Congress of Mathematicians, Marta Sanz So16, 2006,17(2): 1433-1452.
  • 6Gan L. Block compressed sensing of natural images [C']. USA.. IEEE, 2007: 403-406.
  • 7Baraniuk R G. Compressive sensing ~J]. IEEE Sig- nal Processing Magazine, 2007, 24(4).. 118-121.
  • 8Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images ['J]. Nature, 1996, 381 (6583).607-609.
  • 9Mallat S G, Zhang Z. Matching pursuits with time- frequency dictionaries [-J]. Signal Processing, IEEE Transactions on, 1993, 41(12): 3397-3415.
  • 10Tropp J A, Gilbert A C. Signal recovery from ran- dom measurements via orthogonal matching pursuit [-J-]. Information Theory, IEEE Transactions on, 2007, 53(12): 4655-4666.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部