期刊文献+

基于HJ–CCD数据的海面溢油提取方法研究 被引量:1

Study of extraction methods for ocean surface oil spill using HJ – CCD data
在线阅读 下载PDF
导出
摘要 快速、准确地获取溢油污染信息,对海洋的动态监测、保护和可持续利用具有重要意义。环境与灾害监测预报小卫星星座一号(HJ–1)是我国针对生态环境污染和灾害监测发射的新型卫星平台,但HJ–1 CCD多光谱数据的光谱波段较少,仅依赖光谱信息获取海面溢油范围的精度较低。因此,以墨西哥湾溢油事件为研究对象,在分析不同地物光谱特征的基础上,采用灰度共生矩阵,选择合适的纹理结构因子,提取HJ–1 CCD图像中影响溢油识别的地物纹理特征;建立光谱特征和纹理特征相结合的决策树模型,提取海面溢油信息,并与只考虑光谱信息的传统分类方法进行精度对比。结果表明,与最大似然分类法相比,决策树方法的油膜提取用户精度和制图精度分别提高了11.85%和4.28%。 Rapid and accurate access to the oil spill information is of great significance for dynamic monitoring, conservation and sustainable use of the oceans. HJ - 1 is a new satellite platform designed for ecological environmental pollutions and disasters. However, the multispectral image obtained from HJ-CCD has insufficient spectral bands, and the accuracy of acquiring the oil spill coverage only by spectral information is low. In this paper, the oil spill that occurred in the Gulf of Mexico was selected as the research object. Based on the spectral analysis of different features, the authors chose the right texture structure factors and extracted the texture characteristics which affect oil spill identification by gray co-occurrence matrix. A decision tree model combining spectral characteristics with texture characteristics was established to extract the oil spill on the sea surface. A comparative analysis by using the result of maximum likelihood supervision classification method was performed, and the results show that, in comparison with the maximum likelihood classification method, the decision tree method could improve the user's accuracy and the producer's accuracy of oil spill extraction by 11. 85% and 4. 28%respectively.
出处 《国土资源遥感》 CSCD 北大核心 2014年第2期99-104,共6页 Remote Sensing for Land & Resources
基金 山东省留学人员科技活动择优资助项目"基于GPU超级计算的实时海面目标识别算法研究"(编号:SR-12-10-1)资助
关键词 溢油 HJ-1 墨西哥湾 纹理特征 决策树 oil spill HJ - 1 Gulf of Mexico texture characteristic decision tree
  • 相关文献

参考文献14

  • 1Camilla B,Solberg A H S.Oil spill detection by satellite remote sensing [J].Remote Sensing of Environment,2005,95(1):1-13.
  • 2Carnesecchi F,Byfield V,Cipollini P,et al.An optical model for the interpretation of remotely sensed multispectral images of oil spill[C]//Charles R.Proceeding SPIE 7105,Remote Sensing of the Ocean,Sea Ice and Large Water Regions 2008.Wales,2008.
  • 3Li Y,Ma L,Yu S M,et al.Remote sensing of marine oil spills and its applications[C]//Tong Q X.Remote Sensing of the Environment:16th National Symposium on Remote Sensing of China.Beijing,2007.
  • 4Tseng W Y,Chiu L S.AVHRR observations of Persian Gulf oil spills[C]//IEEE International Geoscience and Remote Sensing Symposium.Pasadena:IEEE,1994:779-782.
  • 5陆应诚,陈君颖,包颖,韩文超,李想,田庆久,张秀英.基于HJ-1星CCD数据的溢油遥感特性分析与信息提取[J].中国科学:信息科学,2011,41(S1):193-201. 被引量:10
  • 6姜良美,王芳,肖志坤,张东水.基于纹理特征的微山湖湿地信息提取研究[J].湖南科技大学学报(自然科学版),2011,26(4):68-72. 被引量:6
  • 7张砾.辅以纹理特征的洪泽湖湿地信息提取[J].遥感信息,2010,32(3):30-34. 被引量:9
  • 8Haralick R M,Shanmugam K,Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems,Man and Cybernetics,1973,3(6):610-621.
  • 9Franklin S E,Hall R J,Moskal L M,et al.Incorporating texture into classification of forest species composition from airborne multispectral images[J].International Journal of Remote Sensing,2000,21(1):61-79.
  • 10Li G Y,Lu D S,Moran E,et al.A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,70:26-38.

二级参考文献56

共引文献167

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部