期刊文献+

基于颜色特征的人流量实时检测方法 被引量:2

Method of people counting real-time detection based on color feature
在线阅读 下载PDF
导出
摘要 为改善视频监控中人流量检测的准确性问题,提出一种利用头发颜色特征的人流量跟踪检测方法。该方法对输入图像同时做如下两个操作:基于头发颜色特征的二值化和基于混合高斯模型的前景提取。对这两者合并后的结果做特征判别就可以得到人头区域。以人头区域为目标进行跟踪,分析运动轨迹特征后可以判断行人的进出方向及数目。实验表明该方法在双向行走、行人密集及背景干扰条件下均有很高的正确率。并且,每帧图像平均处理时间只需20 ms,完全可以满足实时处理的要求。 In order to improve the accuracy of the people counting detection in video surveillance,a people tracking and detection method based on hair color feature is proposed in this paper. The input images are processed with the following two operations at the same time:binarization based on hair color feature and foreground extraction based on Gaussian mixture model. Through analyzing the merging results of the two operations,head regions can be got. By tracking head regions and trajectory analysis,the moving direction and number of visitors will easily come to the judgment. The experimental result shows that the method has the high-accuracy even in the conditions of bidirectional moving,dense crowd or background interference. Further-more,the average processing time for per frame is only 20 ms. It can fully meet the requirements of real-time processing.
出处 《现代电子技术》 2014年第7期92-97,共6页 Modern Electronics Technique
基金 中国科学院战略性先导科技专项基金资助项目(XDA06020202) 上海市科委科研计划基金资助项目(12511501700):基于视频传感器融合的城市公共安全物联网关键技术研究
关键词 人流量实时检测 人头识别 目标跟踪 颜色空间 混合高斯模型 people counting real-time detection head recognition object tracking color space Gaussian mixture model
  • 相关文献

参考文献16

  • 1LEFLOCH D,CHEIKH F A,HARDEBERG J Y,et al. Real-time people counting system using a single video camera [J].Proceedings of SPIE,2008,6811:9-20.
  • 2VAN OOSTERHOUT T,BAKKES S,KROSE B J A. Head de-tection in stereo data for people counting and segmentation[C]// proceedings of the International Conference on ComputerVision Theory and Applications (VISAPP). Moscow: [s.n.],2011:620-625.
  • 3ANTIC B,LETIC D,CULIBRK D,et al. K-means based segmen-tation for real-time zenithal people counting [C]// Proceedingsof 2009 16th IEEE International Conference on Image Pro-cessing. [S.l.]:IEEE,2009:2537-2540.
  • 4CHAN A B,LIANG Z S J,VASCONCELOS N. Privacy pre-serving crowd monitoring: Counting people without peoplemodels or tracking [C]// Proceedings of IEEE CVPR. [S.l.]:IEEE,2008:1766-1772.
  • 5KONG D,GRAY D,TAO H. A viewpoint invariant approachfor crowd counting [C]// Proceedings of 2006 18th InternationalConference on Pattern Recognition. Hong Kong, China:ICPR,2006,1187-1190.
  • 6YU Sheng-sheng,CHEN Xiao-ping,SUN Wei-ping,et al. Arobust method for detecting and counting people [C]// Pro-ceedings of 2008 International Conference on Audio,Languageand Image Processing. [S.l.]:ICALIP,2008:1545-1549.
  • 7CHEN T H,CHEN T Y,CHEN Z X. An intelligent people-flow counting method for passing through a gate [C]// Pro-ceedings of 2006 IEEE Conference on Robotics,Automationand Mechatronics. [S.l.]:IEEE,2006:97-102.
  • 8ZENG Cheng-bin,MA H. Robust head-shoulder detection bypca-based multilevel hog-lbp detector for people counting [C]//proceedings of the 2010 20th International Conference on Pat-tern Recognition. Istanbul:ICPR,2010:2069-2072.
  • 9CHEN L,TAO J,TAN Y P,et al. People counting using itera-tive mean-shift fitting with symmetry measure [C]// Proceedingsof 2007 6th International Conference on Information,Communi-cations & Signal Processing. [S.l.]:ICICSP,2007:1075-1078.
  • 10文嘉俊,徐勇,战荫伟.基于AdaBoost和帧间特征的人数统计[J].中国图象图形学报,2011,16(9):1729-1735. 被引量:22

二级参考文献36

  • 1邓世伟,袁保宗.基于数学形态学的深度图像分割[J].电子学报,1995,23(4):6-9. 被引量:22
  • 2陈华杰,韦巍.基于分级边缘方位场匹配的人脸特征定位[J].光电子.激光,2007,18(2):241-244. 被引量:2
  • 3Kim J W, Choi K S, Park W S, et al. Robust real-time people tracking system for security [ J ]. IBS Journal, 2002,2 ( 3 ) : 184- 190.
  • 4Yu Shengsheng, Chen Xiaoping, Sun Weiping, et al. A robust method for detecting and counting people [ C ]//Proceedings of International Conference on Audio, Language and Image Processing. Piscataway, NJ, USA : 1EEE Press, 2008 : 1545-1549.
  • 5Chen Thouho, Hsu Chewei. An automatic bi-directional passing- people counting method based on color Image processing [ C ]// Proceedings of 37th IEEE International Camahan Conference on Security Technology. Piscataway, N J, USA : IEEE Press, 2003 : 200-207.
  • 6Septian H, Tao segmentation and Conference on Ji, Tan Yappeng. People counting by video tracking [ C ]//Proceedings 9th International Control, Automation, Robotics and Vision. Piscataway, NJ, USA: IEEE Press,2006 : 1-4.
  • 7Antic B, Letc D.Culibrk D, et al. K-means based segmentation for real-time zenithal people counting [ C ]//Proceedings of 16th IEEE International Conference on Image Processing. Piscataway, N J, USA: IEEE Press,2009 : 2565-2568.
  • 8Jaijing K, Kaewtrakulpong P, Siddhichai S. Object detection and modeling algorithm for automatic visual people counting system [ C ]//Proceedings of 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Piscataway, NJ, USA, IEEE Press ,2009, 2 : 1062-1065.
  • 9Gardel A, Bravo I, Jimenez P, et al. Real time head detection for embedded vision modules [ C ]// International Symposium on Intelligent Signal Processing. Piscataway, NJ, USA : IEEE Press, 2007:1-6.
  • 10Albiol A, Albiol A, Silla I. Statistical video analysis for crowds counting [ C ]//Proceedings of 16th IEEE International Conference on Image Processing. Piscataway, NJ, USA: IEEE Press, 2009 : 2569 -2572.

共引文献35

同被引文献26

  • 1ENZWEILER M, GAVRILA D M . Monocular pedestrian detec- tion: survey and experiments [J]. Journal of IEEE Trans. Pat- terra Analysis and Machine Intelligence, 2009, 31 (12) : 2179-2195.
  • 2SHERRAH J, RISTIC B, REDDING N J.Particle fiher to track multiple people for visual surveillance [J].IET Computer Vision, 2011,5(4) : 192-200.
  • 3STEPANOV O A.Kalman filtering: past and present, an outlook from Russia[J]. Gyroscopy and Navigation,2011,2(2) :99-110.
  • 4SHERRAH J., RISTIC B, REDDING N J. Particle filter to track multiple people for visual surveillance [J]. Gyroscopy and Navigation, 2011,5 (4) : 99-200.
  • 5XU KUN, GUO Lanying. An anti-occlusion object tracking al- gorithm based on mean shift and particle filter [J]. ICIC Ex- press Letters, Part B: Applications,2011,2( 1 ) :95-100.
  • 6AGUSTIENS I, RAHMAT W M, BASARUDDIN T.Particle filter with Gaussian weighting for human tracking [J]. Telkomnika, 2012,10(6) : 1453-1457.
  • 7BALCELLS C M, DAVID D, DANIEL D.An appearance based approach for human and object tracking [C]//Proc. the IEEE In- ternational Conference on Image Processing.[S.1.]: IEEE Press, 2003 : 85-88.
  • 8ZHANG Yang, LIU Weiming. Diverse gentle adaboostwith cost-sensitive SVM ensemble classifiers algorithm forreal-time pedestrian tracking based on machinevision[J].International Journal of Digital Content Technology and Its Applications, 2014,8(1A) :222-225.
  • 9KUMAR K B , SATPUTE N R, ADIGA A. Tabu search based implementation of object tracking using joint color texture histo- gram[C]// Proc. IEEE 7th international Conference on Industri- al and Information Systems. Chennai, India: [s.n.], 2012: 829-835.
  • 10LIU Li, ZHAO Lingjun, LONG Yunli, et al. Extended local bi- nary patterns for texture classification [J]. Image and Vision Computing, 2012,30 (2) : 86-99.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部