期刊文献+

GPS/INS组合导航的变分贝叶斯自适应卡尔曼滤波 被引量:10

Variational bayesian adaptive Kalman filtering for GPS/INS integrated navigation
在线阅读 下载PDF
导出
摘要 为解决GPS/INS组合导航的数据融合问题中卡尔曼滤波器因噪声统计特性会发生变化而性能严重退化的问题,针对组合导航的系统模型提出并推导了一种基于变分贝叶斯学习的自适应卡尔曼滤波算法.该方法从概率角度将系统状态与噪声的统计矩一起作为待估计的随机变量,在每次递推地对状态进行估计之前,用变分贝叶斯学习迭代逼近得到噪声的后验分布.仿真结果证明:在组合导航系统中,该自适应算法能够较好地跟踪变化的噪声方差,并对速度、位置等系统状态进行估计. To circumvent the problem in GPS/INS integrated navigation for data infusion that Kalman filter degrades severely since the statistics of the noise might be time-variant, an adaptive Kalman filtering algorithm based on variational Bayesian learning is suggested and used in the integrated navigation system model in which both the moment of noise and the states are considered as stochastic parameters and estimated together. Using a probabilistic approach, a concrete derivation is given to represent how variational Bayesian learning works in a recursive way to approximate the true posterior of the noise together with the states. Experimental results demonstrate that the proposed filter is adapti estimating the states including position and velocity ve and performs well in tracking variances of the noise and in GPS/INS integrated navigation system.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第5期59-65,共7页 Journal of Harbin Institute of Technology
基金 中国博士后科学基金特别资助项目(2012T50330)
关键词 卡尔曼滤波 自适应 变分贝叶斯 组合导航 Kalman filtering adaptive variational bayes integrated navigation
  • 相关文献

参考文献16

  • 1KALMAN R E.A new approach to linear filtering andprediction problems [J].Transactions of the ASME,Journal of Basic Engineering,1960,82(D): 35-45.
  • 2KIM K H,LEE J G,CHAN G P.Adaptive two-stageKalman filter in the presence of unknown random bias[J].International Journal of Adaptive Control andSignal Processing,2006,20(7): 305-319.
  • 3HSIEH C S.On the optimality of two?stage Kalmanfiltering for systems with unknown inputs [ J].AsianJournal of Control,2010,12(4): 510-523.
  • 4MEHRA R.Approaches to adaptive filtering [J].IEEETrans.on Automatic Control,1972,17(5): 693-698.
  • 5BISHOP C M.Pattern recognition and machine learning[M].New York: Springer,2007: 462-469.
  • 6BEAL M J.Variational algorithms for approximate Bayesianinference [D].London: University College London,2003:53-70.
  • 7ATTIAS H.Inferring parameters and structure of latentvariable models by variational Bayes [C]/ / Proceedingsof the 15th Conference Annual Conference onUncertainty in Artificial Intelligence.San Francisco,CA: Morgan Kaufmann,1999: 21-30.
  • 8SARKKA S,NUMMENMAA A.Recursive noise adaptiveKalman filtering by variational Bayesian approximations[J].IEEE Transactions on Automatic Control,2009,54(3): 596-600.
  • 9SUN Junlong,ZHOU Jie,GU Xuekui.VariationalBayesian two?stage Kalman filter for systems withunknown inputs [J].Procedia Engineering,2012,29(2012): 2265-2273.
  • 10VRETTAS M D,CORNFORD D.Estimating parametersin stochastic systems: a variational Bayesian approach[J].Physica D: Nonlinear Phenomena,2011,240(23): 1877-1900.

共引文献1

同被引文献66

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部