Nonlinear Dynamics of Rayleigh Taylor Instabilities Studied with a Lattice Boltzmann Method
Nonlinear Dynamics of Rayleigh Taylor Instabilities Studied with a Lattice Boltzmann Method
摘要
Multi-relaxation time lattice Boltzmann method is employed to study the later stages of Rayleigh Taylor instabilities. A heavy fluid is placed over an immiscible lighter fluid in an unstable equilibrium. Various initial disturbances are used to initiate the flow. The D2Q9 lattice arrangement is employed on the computational domain. The density distribution function is determined for both fluids, and a coloring function is used to highlight the two fluids. Interactive forces and body forces are modelled by using the Shah and Chert model. Three different initial disturbances are studied, and their late stages are examined. The classic mushroom structure can be seen on all three cases. Distortions of the mushroom structures are seen due to the effects of the boundary and the influence of the initial disturbance.
参考文献14
-
1M. Cheng. J. tlua. J. Lou. Simulation of bubble-bubble interaction using a lattice boltzmann method. Computers & Fluid 39 (2010) 260-270.
-
2S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1998) 329-364.
-
3S.J. Almalowi, D.E. Oztekin, A. Oztekin, Rayleigh-Taylor instability studied with multi-relaxation lattice Boltzmann method, in: ASME 2013 International Mechanical Engineering Congress and Exposition. California, Nov. 15-21, 2013.
-
4P.L. Bhatnagar, E,P. Gross, M. Krook, A model lbr collision processes in Gases. 1. Small amplitude processes in charged and neutral one-component systems, Physical Review 94 (3) (1954) 511-525.
-
5S. Succi. The Lattice Boltzmann Equation lbr Fluid Dynamics and Beyond, Oxford Science Publications. UK. 2001.
-
6S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, Digital Edition, Cambridge Mathematical Library. UK, 1999.
-
7X. He, L. Luo. Lattice Boltzmann model tbr the incompressible Navier-Stokes equation. Journal of Statistical Physics 88 (3) (1997) 927-944.
-
8S. Hou, X. Shan, Q. Zou. G. Doolen. W.E. Soil, Evaluation of two lattices Boltzmann models for multiphase flows, Journal of Computational Physics 138 (1997) 695-713.
-
9X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Reviev E. 47 (3) (1993) 1815-1819.
-
10H. Huang. Z. Li. S. Lui. Z. Lu. Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects lbr tvo-phase flov in porous media. International Journal for Numerical Methods in Fluids 61 (2009) 341-354.
-
1于少萍,方传代,陈敏.电介质中的电位移[J].大学物理,1999,18(7):19-21.
-
2刘泽金,陆启生,蒋志平,阎维贤,赵伊君.InSb晶体的杂质原子局域振动状态的密度分布函数计算[J].国防科技大学学报,1996,18(2):153-156.
-
3姜海涛,朱大铭.短块移动排序的14/11近似算法[J].中国科学:信息科学,2011,41(1):33-47. 被引量:1
-
4沈平.暗声学超材料及其性能[J].物理,2012,41(7):466-466.
-
5陈代珣.Lattice-Boltzmann方法与粘滞流模拟解[J].西南石油学院学报,2003,25(2):80-82.
-
6材料光学性能测试与设备[J].中国光学,2001(2):90-90.
-
7刘兆龙,胡海云,范天佑,邢修三.Non-equilibrium statistical theory about microscopic fatigue cracks of metal in magnetic field[J].Chinese Physics B,2010,19(10):597-602.
-
8周斌,张秀荣,程若磊,李卫东.精确求解一维简谐势阱中理想玻色子气体的密度分布[J].山西大学学报(自然科学版),2016,39(4):611-615.
-
9张东晖,杨浩,施明恒.多孔介质分形模型的难点与探索[J].东南大学学报(自然科学版),2002,32(5):692-697. 被引量:18
-
10李凯,钟诚文.A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows[J].Chinese Physics B,2015,24(5):262-269. 被引量:1