期刊文献+

基于ESN网络的连续搅拌反应釜(CSTR)辨识 被引量:13

Identification of Continuous Stirred Tank Reactor Based on Echo State Network
原文传递
导出
摘要 针对以往递归神经网络(RNN)训练算法难,连续搅拌反应釜(CSTR)的强非线性等问题,将回声状态网络(echo state network,ESN)方法应用于模型不确定的CSTR系统辨识中.ESN具有较强的非线性逼近能力和良好的短期记忆能力,且只需要训练网络输出权值,简化了网络训练算法.仿真结果表明,在相同条件下,与带动量的BP(back propagation)神经网络、BP-MLP(back propagation multilayer perceptron)神经网络、最小二乘支持向量机(LS-SVM)、模糊神经网络(FNN)、GAP-RBF神经网络、MGAP-RBF神经网络相比,ESN能给出相当好的性能,表现出较高的辨识精度,ESN比带动量的BP、BP-MLP、LS-SVM神经网络的逼近精度提高了4个数量级,表明了该方法的有效性. For the difficulties in the algorithms' training using the existing recurrent neural network( RNN) and the high nonlinearity in the CSTR( continuous stirred tank reactor) system,an echo state network( ESN) is applied to the identification of the CSTR system with model uncertainty.ESN has strong nonlinear approximation ability and good short-term memory capacity.Futhermore,only the output weights need to be trained,so the network training algorithm is simplified.Simulation results reveal that the proposed method provides considerably better performance and accuracy of identification than methods based on any of the following under same conditions: BP neural networks,BP-MLP neural network,least squares support vector machine( LS-SVM),fuzzy neural network( FNN),GAP-RBF neural network,and MGAP-RBF neural network.Furthermore,the approximation accuracy of the method based on ESN is four times more accurate than the BP,BP-MLP,and LS-SVM.The simulation results verify the effectiveness of the method.
作者 李晓华 李军
出处 《信息与控制》 CSCD 北大核心 2014年第2期223-228,共6页 Information and Control
基金 甘肃省财政厅基本业务费项目(620026) 甘肃省教育厅硕导项目(1104-09)
关键词 连续搅拌反应釜(CSTR) 神经网络 回声状态网络 系统辨识 continuous stirred tank reactor(CSTR) neural network echo state network system identification
  • 相关文献

参考文献20

  • 1Wayne B B. Process control: Modelling, design, and simulation M ]. London, UK : Prentice Hall, 2003 : 641 - 659.
  • 2Braake H A B, Can H J L, Scherpen J M A, et al. Control of nonlinear chemical processes using neural models and feedback linearization [ J ]. Computers and Chemical Engineering, 1998, 22 (7/8) : 1113 - 1127.
  • 3Himmelblau D M. Applications of artificial neural networks in chemical engineering[ J ]. Chemistry Engineering Rsearch, 2000, 17 (4) : 373 - 392.
  • 4Vasi6kaninov6 A, BakoovO M. Neural network predictive control of a chemical reactor[ J]. Acta Chimica Slovaca, 2009, 2(2) : 21 -36.
  • 5王永骥,徐桂英.连续搅拌反应釜(CSTR)的神经网络动态建模[J].控制与决策,2000,15(3):375-377. 被引量:7
  • 6何剑春,王慧燕.CMAC网络建模在非线性预测控制中的应用[J].控制与决策,2002,17(1):92-92. 被引量:5
  • 7刘士荣,俞金寿.神经模糊逆模/PID复合控制在CSTR中的应用[J].控制理论与应用,2001,18(5):769-773. 被引量:24
  • 8Liu Y, Wang H Q, Yu J, et al. Selective recursive kernel learning for online identification of nonlinear systems with NARX form[ J ]. Journal ofProcess Control, 2010, 20(2) 181 -194.
  • 9Jaeger H. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach[ R]. Sankt Au gustin, Germany : German National Research Center for Information Technology, 2002.
  • 10Jaeger H. Adaptive nonlinear system identification with echo state networks [ C ]//Advances in Neural Information Processing Systems. Cam bridge, USA: MIT Press, 2003 : 593 - 600.

二级参考文献89

共引文献134

同被引文献121

引证文献13

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部