期刊文献+

极限学习机在图像隐写分析中的应用 被引量:1

An image steganalysis using ELM
在线阅读 下载PDF
导出
摘要 为了有效提高图像隐写分析的检测正确率和速度,特结合单隐层前馈神经网络(SLFN)的特点,提出了一种基于极限学习机(ELM)的隐写分析方法.该方法首先根据Fridrich提出的多域特征提取算法从图像DCT域和空域中提取特征;得到193维原始特征;然后使用"主成份分析"法将其约简至18维;最后采用极限学习机作为分类方法构造隐写分析算法.实验表明,与目前隐写分析算法中广泛使用的支持向量机(SVM)相比,极限学习机参数调节少,学习速度快,以较少的隐层节点数取得了与SVM相似的检测正确率,能够实现针对各类JPEG图像隐写算法的有效检测. In order to obtain higher detection rate and faster training speed for image steganalysis, a new steganalysis algorithm based on extreme learning machine(ELM) was presented by combining with the single hidden layer feedforward neural networks (SLFN). Firstly, some features in discrete cosine transform (I)CT) and spatial domain were extracted from a JPEG image according to Fridrich's algorithm. Then the original 193- dimensional features were reduced to 18-dimensional features with PCA. Finally, A blindly steganalysis algorithm was constructed with the classifying technique of ELM. The experimental results showed that ELM had faster learning speed and similar classification accuracy compared with SVM since it had a smaller number of turning parameters and less number of neurons. ELM can therefore be used in a blind steganalysis for all kinds of JPEG images.
出处 《中国计量学院学报》 2014年第1期80-86,共7页 Journal of China Jiliang University
基金 浙江省自然科学基金资助项目(No.Y1110450)
关键词 隐写分析 极限学习机 多域特征 主成份分析 支持向量机 steganalysis ELM multi domain features PCA SVM
  • 相关文献

参考文献13

  • 1HOLOTYAN T, FRIDRICH J, VOLOSHYNOVSKIY S. Blind statistical steganalysis of additive steganography using wavelet higher order statistics[C]//Proceedings of 9th IEIP TC-6 TC-11 Conference on Communications and Multimedia Security. Salzburg: Springer LNCS,2005 : 273-274.
  • 2FARID H. Detecting steganographic messages in digital im- ages[R]. USA,New Hampshire:Computer Science Depart- ment,2001.
  • 3FU Dongdong, SHI Yunqing, ZOU Dekun, et. al. JPEG steganalysis using empirical transition matrix in block DCT domain[C]//lnternational Workshop On Multimedia Signal Processing. Victoria: IEEE,2006:310-313.
  • 4PEVNY T, FRIDRICH J. Merging Markov and DCT features for multi-class JPEG steganalysisEC]//Proceedings of SPIE E- lectronlc Imaging Security Steganography and Waternmrking of Multimedia Contents IX San Jose Society for Imaging Science and Technology. San Jose: IEEE, 2007 : 530-650.
  • 5FRIDRICH J. Feature based steganalysis for JPEG images and its implications for future design of steganographic schemes [C]//Proeeedings of the 6th Information Hiding Workshop. Toronto : IEEE, 2005 : 67-81.
  • 6VAPNIK V N. The nature of statistical learning theory[J]. Transaction on Neural Networks. NewYork:IEEE, 1999,10 (5) : 988-998.
  • 7HUANG Guangbin, ZHU Qinyu, Siew C K. Extreme learning machine: Theory and applicationsEJ]. Neurocom- puting, 2006,70(3) : 489-501.
  • 8王锋,曾宇梅,沃棋棋,臧月,尹晓庆,唐佳玲,李大东.极限学习机在3种虾体氨基酸水解液检测中的应用[J].计算机与应用化学,2013(2):199-202. 被引量:3
  • 9舒隽,甘磊.极限学习机方法在电力线路建设成本估算中的应用研究[J].现代电力,2011,28(4):78-83. 被引量:19
  • 10张涛,平西建,徐长勇.基于图像平滑度的空域LSB嵌入的检测算法[J].计算机辅助设计与图形学学报,2006,18(10):1607-1612. 被引量:14

二级参考文献79

共引文献49

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部