期刊文献+

利用方向延伸专家场的单幅雾天图像复原 被引量:10

Single Foggy Image Restoration Using Orientation Extended Fields of Experts
在线阅读 下载PDF
导出
摘要 针对已有单幅雾天图像复原算法存在的局部方向性结构信息描述不充分,易导致复原后景物局部细节模糊或丢失的不足,提出一种基于方向延伸专家场的单幅雾天图像复原算法.首先基于大气散射模型获得粗略的大气光传输图估计,并在此基础上建立方向延伸专家场模型对大气光传输图进行优化;为避免在图像景物高亮度区域出现失真现象,利用无黑点约束算法对大气光传输图进行约束及调整,再根据图像中景物的梯度先验信息获取位于无穷远区域的像素集,由此估计出大气光强值;最后根据大气散射模型反向求解,得到复原后的场景图像.实验结果表明,该算法不仅可以显著地改善景物的细节信息、提高图像清晰度,并且恢复后的景物颜色更加自然、真实. Traditional single foggy image restoration algorithms cannot sufficiently describe the local directional structure information of the scene, which tends to make partial details of the scene be vague or missing after the recovery. To overcome this drawback, a new fog-removing algorithm based on orientation extended Fields of Experts was proposed in this paper. Firstly, the atmosphere transmission map was estimated cursorily according to the atmospheric scattering model, and it was further refined by the orientation extended Fields of Experts. To avoid the distortion at highlight areas, the atmosphere transmission map was restricted and adjusted by the no black pixel constraint algorithm. Secondly, the grads apriority rule was used to obtain the set of pixels that are located in the infinite region, so as to estimate the intensity of atmospheric light. Finally, by reversely solving the atmospheric scattering model, the defogged image was obtained. Experimental results show that the proposed algorithm can not only remarkably improve the detailed information of scene, and enhance the degree of clearness of foggy images, but also make the color appearances much more natural and realistic.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第5期782-787,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61379105) 安徽省自然科学基金(1208085QF115)
关键词 图像复原 专家场模型 去雾 梯度先验 image restoration fields of experts model defogging grads apriority rule
  • 相关文献

参考文献15

  • 1Narasimhan S G, Nayar S K. Removing weather effects from monochrome images [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos.. IEEE Computer Society Press, 2001, 2- 186-193.
  • 2Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze [J] Applied Optics, 2003, 42(3)- 511-525.
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6)- 713-724.
  • 4Kopf J, Neubert B, Chen B, et al. Deep photo- model-based photograph enhancement and viewing [J] ACM Transactions on Graphics, 2008, 27(5): Article No. 116.
  • 5Tan R T. Visibility in bad weather from a single image [C]// Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos- IEEE Computer Society Press, 2008: Article No. 4587643.
  • 6Fattal R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): Article No. 72.
  • 7He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12)- 2341-2353.
  • 8Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image [C] //Proceedings of the 12th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2009:2201-2208.
  • 9禹晶,李大鹏,廖庆敏.基于物理模型的快速单幅图像去雾方法[J].自动化学报,2011,37(2):143-149. 被引量:108
  • 10Welling M, Hinton G E, Osindero S. Learning sparse topographic representations with products of student-t distributions [C] //Proceedings of the Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2002:1359-1366.

二级参考文献21

  • 1Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 2Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193.
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 4Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332.
  • 5Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525.
  • 6Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45.
  • 7Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991.
  • 8Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179.
  • 9Tan K, Oakley P J. Physics-based approach to color image enhancement in po()r visibility conditions. Optical Society o[America, 2001. 18(10): 2460-2467.
  • 10Narasimhan S G, Nayar S K. Interactive (de) weathering of an image using physical models. In: Proceedings of the ICCV Workshop on Color and Photometric Methods in Computer Vision. Nice, France: IEEE, 2003. 1387-1394.

共引文献107

同被引文献78

  • 1Fan Guo,Jin Tang,Zi-Xing Cai.Image Dehazing Based on Haziness Analysis[J].International Journal of Automation and computing,2014,11(1):78-86. 被引量:4
  • 2王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:124
  • 3孙君顶,丁振国,周利华.基于图像信息熵与空间分布熵的彩色图像检索方法[J].红外与毫米波学报,2005,24(2):135-139. 被引量:21
  • 4FATTAL R. Single image dehazing[J].Proceedings of SIGGRAPH, 2008, 27(3):1-9.
  • 5HE K, SUN J, TANG X. Single image haze removal using dark channel prior [C]. Proc. of 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2009: 1956-1963.
  • 6HAUTIéRE N, TAREL J P, HALMAOUI H. Enhanced fog detection and free-space segmentation for car navigation [J]. Machine Vision and Applications, 2014, 25: 667-679.
  • 7NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. PAMI, 2003, 25(6): 713-724.
  • 8WANG J W, WU H N, LI H X. Distributed proportional-spatial derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(3):927-938.
  • 9BENK J, PFLUGER D. Hybrid parallel solutions of the Black-Scholes PDE with the truncated combination technique[C]. International Conference on High Performance Computing and Simulation (HPCS), 2012: 678-683.
  • 10RUDINL, OSHER S, FATIME E. Nonlinear total variation bases noise removal algorithm [J]. Physisca D, 1992, 60(1):259-268.

引证文献10

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部