期刊文献+

说话人识别中改进特征提取算法的研究 被引量:3

Study of improving feature extraction algorithm in speaker recognition
在线阅读 下载PDF
导出
摘要 为了提取到能够区分不同说话人个性特征的最优特征参数,采用在Mel频率倒谱系数(Mel-frequency cepstrum coefficients,MFCC)基础上进行改进的复合参数,即增加归一化短时能量参数和一阶差分所构成的特征矢量作为特征。针对高维特征参数,提出了一种基于相关距离Fisher准则的特征选取方法,利用该方法对提取出的参数进行加权降维。通过实验对比结果表明,该算法提高了识别率,具备可行性与优越性,是一种有效的特征提取算法。 To extract speaker's personality characteristics that different speakers can be distinguished better. Firstly, a design method of Mel cepstrum composite coefficients based on the Mel Frequency cepstrum coefficient (MFCC) is constructed. The normalized short-time energy parameters and first-order difference are used to be the improved feature parameters. Then, in view of the high dimensional parameters, a algorithm for feature selection about Fisher criterion with correlation distance is introduced. The weighted algorithm designed to lower dimension for Mel cepstrum composite coefficients. Finally, an simulation example is presented to prove the recognition rate is improved as well as the feasibility and superiority of the proposed method, indicated that this study is an effective feature extraction algorithm.
作者 宋乐 白静
出处 《计算机工程与设计》 CSCD 北大核心 2014年第5期1772-1775,1781,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61072087) 山西省科技攻关基金项目(20120313013-6)
关键词 说话人识别 特征提取 归一化短时能量 梅尔倒谱复合参数 相关距离Fisher准则 speaker recognition feature extraction the normalized short-term energy Mel cepstrum composite coefficients Fisher criterion with correlation distance
  • 相关文献

参考文献9

二级参考文献44

  • 1鲍焕军,郑方.GMM-UBM和SVM说话人辨认系统及融合的分析[J].清华大学学报(自然科学版),2008,48(S1):693-698. 被引量:10
  • 2汪峥,连翰,王建军.说话人识别中特征参数提取的一种新方法[J].复旦学报(自然科学版),2005,44(1):197-200. 被引量:16
  • 3张永亮,曾以成.一种分数余弦变换及应用[J].通信学报,2005,26(9):111-115. 被引量:1
  • 4张芸,李昕,郑宇,杨庆涛.一种基于Fisher准则的说话人识别方法研究[J].兰州大学学报(自然科学版),2007,43(2):92-97. 被引量:5
  • 5DE LIMA C B, ABRAHAM A, AOPLINARIO J A Jr. On the use of PCA in GMM and AR-Vector models for text independ spreaker verification[J]. Proceedings of the IEEE, 1997,85 (9) : 1437-1462.
  • 6ZHANG Wan-feng, YANG Ying-chun, WU Zhao-hui, et al. Experimental evaluation of a new speaker identification framework using PCA[C]// Proceedings of the IEEE International Conference on Systems, Man and Cybernietics. [S.l.] : IEEE Press, 2003,5 : 4147-4152.
  • 7SEO C, LEE K Y, LEE J. GMM based on local PCA for speaker identication[J]. Electronics,2001,37(9):1486-1488.
  • 8WU Jun-wen, ZHANG Xue-gong. A PCA classifier and its application in vehicle detection[C]// Proceedings of International Joint Conference on Neural Networks. [S.l.]: IEEE Press,2001,1:600-604.
  • 9ATAL B S. Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification[J]. J. Acoust. Soc. Amen.,1974,55(6): 1304-1312.
  • 10BING X, BERGER T. Efficient text-independent speaker verification with structural Gaussian mixture models and neural network[J]. IEEE Trans. on Speech and Audio Processing, 2003,11(S):447-456.

共引文献35

同被引文献34

  • 1龙艳花,郭武,戴礼荣.用于SVM说话者确认系统的序列核[J].清华大学学报(自然科学版),2008,48(S1):688-692. 被引量:1
  • 2郭武,戴礼荣,王仁华.采用UBM更新量作为支持向量机特征的说话人确认[J].清华大学学报(自然科学版),2008,48(S1):704-707. 被引量:4
  • 3岳倩倩,周萍,景新幸.基于非线性幂函数的听觉特征提取算法研究[J].微电子学与计算机,2015,32(6):163-166. 被引量:6
  • 4王飒,郑链.基于Fisher准则和特征聚类的特征选择[J].计算机应用,2007,27(11):2812-2813. 被引量:21
  • 5Kenny P, Boulianne G, Ouellet P. et al. Speaker and Session Variability in GMM -Based Speaker Verification[ C]// IEEE transactions on audio, speech, and language processing. USA : IEEE Press, 2007 : 1448 - 1460.
  • 6Campbell W, Sturim D, Reynolds D. Support vector machines using GMM supervectors for speaker verification [J]. Signal Process Letters, 2006, 13(5) :308 -311.
  • 7Chang Huai You, Kong Aik Lee, Haizhou Li. GMM - SVM Kernel With a Bhattacharyya - Based Distance for Speaker Recognition [ C ]// IEEE Transactions on Audio, Speech, and Language Processing. USA : IEEE Press, 2009 : 1300 - 1312.
  • 8Shan Zhong, Yuxiang Shan, Liang He, et al. Research on Intercession Variability Compensation for MLLR - SVM Speaker Recognition [J].IEICE Transactions on fundamentals of electronics, communications & computer sciences. USA: IEEE Press, 2009, E92/A (8) : 1913 - 1919.
  • 9Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [ J ]. Pattern Analysis and Machine Intelligence, 2008, 31(2): 210-227.
  • 10Naseem I,Togneri R,Bennamoun M. Sparse Representation for Speaker Identification[ C]//20th International Conference on Pattern Recog- nition (ICPR), Istanbul. USA: IEEE Press, IEEE Press,2010:4460 -4463.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部