期刊文献+

一种80位扩展双精度浮点三角函数运算单元的设计 被引量:2

Design of a 80 Bits Extended Double Precision Floating-Point Trigonometric Computing Unit
在线阅读 下载PDF
导出
摘要 三角函数求值这一运算计算过程复杂,硬件较难实现.针对这一问题,通过改进CORDIC算法,实现了兼容SPARC处理器和INTEL处理器浮点标准的80位高精度浮点三角函数的计算.在算法设计中,将函数的计算范围扩展至-π^+π,并且实现了迭代次数的可配置.最后验证了算法的正确性与完整性,分析了运算过程中迭代次数与精度的关系.结果表明,运算的精度提高到10-14. The trigonometric algorithm is hard to achieve. By improving the CORDIC algorithm achieved a 80- precision floating-point trigonometric calculation which compatibled with the INTEL processor and SPARC processor. In the design, the calculation range has been extended to -π ~ + π, and the number of the iterations can be configured. Finally, the correctness and completeness of the algorithm are verified, and the relationship between the number of iterations and the accuracy was analyzed. The results showed that the precision was raised up to 10-14 , the simplicity and speed of the algorithm were also great advantages.
出处 《微电子学与计算机》 CSCD 北大核心 2014年第4期23-26,共4页 Microelectronics & Computer
关键词 CORDIC算法 高精度 三角函数 浮点 CORDIC algorithm high-precision trigonometric functions floating-point
  • 相关文献

参考文献7

  • 1孑L德元.针对正弦余弦计算的CORDIC算法优化及其FPGA实现[D].长沙:中南大学,2008.
  • 2陈石平,李全,付佃华,段吉海.32位浮点正余弦函数的FPGA实现[J].微计算机信息,2008,24(5):176-178. 被引量:3
  • 3Oskar Mencer. Application of reconfigurable CORDIC architectures[-J:. Journal of VLSI Signal Processing Systems, 2000,24 : 211-221.
  • 4Zhou Zhiheng, Wu Dongcheng. An algorithm for com- puting the value of arbitrary angle trigonometric func- tionTransportationEC3//2011 International Conference on Digital Object Identifier. Guangzhou: South China University of Technology, 2011.
  • 5IEEE organise. IEEE Std 754-1985 IEEE Standard for Binary Floating-Point Arithmetic [$3. New York: IEEE, 1985.
  • 6朱亚超.基于IEEE 754的浮点数存储格式分析研究[J].计算机与信息技术,2006,0(9):50-52. 被引量:16
  • 7司少玲,关永.三角函数曲线数据拟合最佳次数的确定[J].计算机工程与设计,2006,27(24):4660-4662. 被引量:15

二级参考文献12

  • 1王新和,程世洲.曲线拟合的最小二乘法[J].新疆职业大学学报,2004,12(2):84-86. 被引量:33
  • 2岳玉芳,尤忠生,张玉双.基于COM的VB与Matlab混合编程[J].计算机工程与设计,2005,26(1):61-62. 被引量:43
  • 3[1]Volder.The CORDIC trigonometric computing technique.IRE Trans.Electronic Computers,1959,EC-8(3):334-334.
  • 4[2]Richard Herveille.Cordic Core Specification.18,2001
  • 5[4]IEEE organise.IEEE Standard for Binary Floating-Point Arithmetic Inc 345 East 47th Street,New York,NY 10017,USA
  • 6[6]http://www.altera.com.cn/education/univ/local/events/articles/aug 2.pdf
  • 7同济大学数学教研室.高等数学(下册)[M].第5版.北京:高等教育出版社,2004.78-80,265-274.
  • 8张森.Matlab程序设计与实例应用[M].北京:中国铁道出版社,2001.81-150.
  • 9David Goldberg,Doug Priest.What Every Computer Scientist Should Know about Floating-Point Arithmetic. http:.grouper.ieee.org/ .
  • 10Sun Corporation.Numerical Computation Guide. http:.docs.sun.com .

共引文献31

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部